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A B S T R A C T

Accurate quantification of cerebral blood flow (CBF) is essential for the diagnosis and assessment of a wide
range of neurological diseases. Positron emission tomography (PET) with radiolabeled water (15O-water) is the
gold-standard for the measurement of CBF in humans, however, it is not widely available due to its prohibitive
costs and the use of short-lived radiopharmaceutical tracers that require onsite cyclotron production. Magnetic
resonance imaging (MRI), in contrast, is more accessible and does not involve ionizing radiation. This study
presents a convolutional encoder–decoder network with attention mechanisms to predict the gold-standard
15O-water PET CBF from multi-contrast MRI scans, thus eliminating the need for radioactive tracers. The model
was trained and validated using 5-fold cross-validation in a group of 126 subjects consisting of healthy controls
and cerebrovascular disease patients, all of whom underwent simultaneous 15O-water PET/MRI. The results
demonstrate that the model can successfully synthesize high-quality PET CBF measurements (with an average
SSIM of 0.924 and PSNR of 38.8 dB) and is more accurate compared to concurrent and previous PET synthesis
methods. We also demonstrate the clinical significance of the proposed algorithm by evaluating the agreement
for identifying the vascular territories with impaired CBF. Such methods may enable more widespread and
accurate CBF evaluation in larger cohorts who cannot undergo PET imaging due to radiation concerns, lack
of access, or logistic challenges.
1. Introduction

Cerebrovascular diseases are a worldwide public health issue, im-
pacting all racial and ethnic groups (Yusuf et al., 2001). Stroke alone
affects 15 million individuals annually, resulting in five million deaths
and five million permanent disabilities, placing a strain on family,
community, and health care systems (Mukherjee and Patil, 2011).
Early diagnosis and proper evaluation of cerebrovascular diseases can
reduce damage to the brain and facilitate faster treatment. Moreover,
abnormalities in cerebral blood flow (CBF) are often associated with
multiple neurological conditions, including vascular malformations,
seizure disorders, and neurodegenerative disorders such as Alzheimer’s
disease (Iturria-Medina et al., 2016; Leijenaar et al., 2017). Accord-
ingly, accurate CBF quantification is essential for the diagnosis and
evaluation of cerebrovascular diseases.
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Positron emission tomography (PET) with radiolabeled water (15O-
water) is widely considered the gold-standard imaging technique for
measuring CBF in humans (Ito et al., 2004). However, due to its
prohibitive costs, difficult logistics, and use of ionizing radiation, PET
is not widely available, with only around 20 centers in the world
offering 15O-water PET CBF imaging, mostly in a research setting.
Magnetic resonance imaging (MRI) is a more accessible and cost-
effective alternative, with arterial spin labeling (ASL) perfusion MRI
and dynamic susceptibility contrast (DSC) perfusion MRI being the two
most common exams used to quantify CBF (Detre et al., 1992; Villringer
et al., 1988). Despite its widespread use, MRI-derived CBF maps can
be inaccurate in the presence of global or focal CBF reductions, as
is often seen in patients with cerebrovascular diseases (Grade et al.,
2015). This has led to the development of image-to-image translation
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methods to synthesize PET-like CBF maps from MRI scans, which
can potentially improve the quantitative and qualitative assessment of
CBF when compared to perfusion MRI-derived CBF measurements, and
would be applicable to a wider range of patients and indications than
is feasible with PET imaging.

Recent advances in computer vision and the increasing size of
medical imaging databases have enabled the development of image-to-
image translation methods using deep learning, which can transform
one medical imaging modality to another. Examples include predicting
computed tomography (CT) images from MRI (Kearney et al., 2020),
MRI from CT (Jin et al., 2019), CT from PET (Armanious et al., 2019),
PET from CT (Ben-Cohen et al., 2019), MRI from PET (Bazangani et al.,
2022), and different MRI contrasts from one another (Dar et al., 2019).
However, the clinical utility of such cross-modality translations has
yet to be established. In recent years, several image synthesis methods
have been proposed to transform multi-parametric brain MRI images
into 15O-water PET CBF maps (Guo et al., 2020; Yousefi et al., 2021).
These methods could potentially extend the ability to quantitatively
characterize cerebrovascular disorders to sites without the capability
to perform the gold-standard PET imaging. For instance, Guo et al.
(2020) used a deep convolutional neural network (CNN) to predict 15O-

ater PET scans from multi-contrast MRI inputs, achieving an average
tructural similarity index (SSIM) of 0.85 in both normal subjects and
atients with cerebrovascular disease. Similarly, Yousefi et al. (2021)
ntroduced an attention-guided CNN for translating T1-weighted and
SL data to PET-like images, achieving a comparable SSIM of 0.85 in
ormal subjects.

Although existing MRI-to-PET translation models could synthesize
ET CBF maps of acceptable quality, yet their accuracy and clinical
pplicability can be further improved. This work introduces a novel
ultimodal encoder–decoder attention network for synthesizing 15O-
ater PET CBF maps from structural and perfusion MRI scans. The

nputs to the network include structural (T1w and T2-FLAIR) and
erfusion images (single-delay [SD] and multi-delay [MD] ASL), as
ell as CBF estimates derived from the ASL sequences. Experiments
ere conducted to evaluate the model performance with different

oss functions, network settings, and subsets of input MRI scans. The
esults demonstrate that the proposed method outperforms the state-
f-the-art methods in terms of PET prediction performance. The main
ontributions of this work are as follows:

• A 3D convolutional encoder–decoder network incorporating at-
tention mechanisms is proposed, along with a custom-designed
loss function.

• Quantitative and qualitative analyses are conducted to study
whether the integration of anatomical and tissue perfusion infor-
mation from structural and ASL MRI exams can improve the pre-
diction of PET CBF for both healthy controls and cerebrovascular
disease patients.

• Ablation studies are performed to evaluate the impact and con-
tributions of various loss functions, attention mechanisms, and
different input MRI scans on the overall quality of the synthesized
PET images.

• The diagnostic accuracy of the predicted PET CBF maps is evalu-
ated using the Receiver Operating Characteristic (ROC) analysis,
which assesses the ability to identify brain regions with impaired
CBF. The classification accuracy, sensitivity, and specificity are
also calculated to evaluate the clinical value of synthetic PET in
diagnosing cerebrovascular diseases in MRI-only facilities.

. Related work

This section initially reviews the concurrent and prior deep learning
odels that are commonly used in cross-modality brain image syn-

hesis applications. Following this, we review the recent MRI-to-PET
ranslation networks related to our study.
2

2.1. Cross-modality brain image-to-image translation

Recently, image-to-image translation networks have been utilized
to address various image prediction problems in the medical field.
Wolterink et al. (2017) took a pioneering role in applying deep learning
for cross-modality medical image synthesis. They applied a generative
adversarial network (GAN) to convert 2D brain MRI images into 2D
brain CT images and vice versa. Results from a separate test set of six
patients showed that GANs can generate CT images that closely resem-
ble actual CT images, with an average PSNR of 32.3 dB. Subsequently,
Dar et al. (2019) employed conditional generative adversarial networks
for multi-contrast MRI synthesis. The combination of adversarial loss
with pixel-wise and perceptual losses improved the synthesis perfor-
mance of both T1- and T2-weighted images. Additionally, Yang et al.
(2020b) developed a cross-modality MRI image generation method for
multimodal registration and segmentation using conditional generative
adversarial networks. This method achieved comparable results on five
brain MRI datasets while using a single modality image as an input.

In Armanious et al. (2020), a GAN-based framework with a novel
generator architecture and style-transfer losses was proposed to ad-
dress three medical image-to-image translation problems: PET-to-CT
translation, MRI motion artifacts correction, and PET image denoising.
The quantitative results and radiologists’ evaluations demonstrated
the superiority of the proposed GAN architecture compared to exist-
ing translation methods. Yang et al. (2020a) proposed a structure-
constrained cycleGAN for unsupervised MRI-to-CT synthesis. This ap-
proach incorporated an additional structure-consistency loss function
and a self-attention module to generate high-quality synthetic brain
and abdomen CT images. Liu et al. (2022) proposed a transformer-
based MRI synthesis approach, named multi-contrast multi-scale trans-
former (MMT), for missing MRI sequence imputation. Experiments on
two multi-contrast MRI datasets showed that MMT can outperform
state-of-the-art MRI synthesis methods both quantitatively and quali-
tatively. This suggests that vision transformers can be used not only
for medical image recognition problems, but also for more challenging
image-to-image translation problems.

Image-to-image translation networks were also used to reduce or
even eliminate the need for gadolinium-based contrast agents (GBCAs)
in MRI studies. In Gong et al. (2018), a convolutional encoder–decoder
network was utilized in to synthesize high-quality contrast-enhanced
MRI (CE-MRI) images from images taken with a reduced dose of the
GBCA. Quantitative results and qualitative assessments demonstrated
that the synthesized CE-MRI images had a significant improvement
in image quality and contrast enhancement compared to the acquired
low-dose images. Moreover, a 3D high-resolution fully convolutional
network was proposed in Chen et al. (2021) to map a set of pre-contrast
MRI scans to CE-MRI. The pre-contrast MRI sequences of T1-weighted
(T1w), T2-weighted (T2w), and apparent diffusion coefficient (ADC)
map were used as inputs to the network and the post-contrast T1w
being the target output. Results showed high-quality synthetic CE-MRI
images, potentially allowing deep learning to substitute for GBCAs and
reduce gadolinium deposition.

Others have explored the same synthesis problem by using T1w,
T2w, and fluid-attenuated inversion recovery (FLAIR) MRI sequences
as inputs for two deep convolutional neural networks (dCNN) (Preetha
et al., 2021). Results indicated that the quantification of the syn-
thetic CE-MRI images could effectively gauge the patient’s response to
treatment with minimal discrepancy compared to true CE-MRI images
obtained through gadolinium administration. Furthermore, Xie et al.
developed a more advanced cascade neural network architecture that
incorporated the contour information of the input unenhanced MRI
images to enhance the quality of the synthetic CE-MRI images (Xie
et al., 2022). Quantitative and qualitative assessments on a test set of
169 patients revealed that, due to the contour information, no intensity
differences were seen in both tumor and non-tumor brain regions.
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2.2. MRI-to-PET translation

Researchers have investigated the possibility of converting MRI data
into PET-like images. Li et al. (2014) utilized a 3D CNN model to
generate FDG-PET patterns from MRI data of the ADNI database. This
model was equipped with a large number of parameters that could
capture the nonlinear relationship between MRI and PET data. The
trained network was then used to predict PET patterns in subjects with
only MRI data. This technique was shown to be effective in diagnosing
Alzheimer’s disease (AD). In Sikka et al. (2018), Sikka et al. proposed a
3D U-Net architecture to synthesize FDG-PET images from MRI scans,
with the aim of improving the diagnosis of Alzheimer’s disease. Their
model yielded an average increase in the classification accuracy of
4.25%. Similarly, in Pan et al. (2018), Pan et al. developed a two-stage
deep learning framework using incomplete multi-modal imaging data,
incorporating a cycleGAN model to impute the missing PET data from
MRI scans. The resulting synthetic PET images were found to enhance
the accuracy of Alzheimer’s disease classification.

In Gao et al. (2021), Gao et al. proposed a task-induced pyramid and
attention generative adversarial network for FDG-PET imputation from
MRI. Experiments conducted on the ADNI database showed the model
to be effective in FDG-PET synthesis, achieving an average SSIM of
0.915 and PSNR of 29 dB. Lan et al. (2021) utilized a 3D self-attention
conditional GAN (SC-GAN) that incorporated attention modules to
establish connections between different neuroimaging modalities. The
SC-GAN was evaluated on the ADNI database, where it was used to
generate various downstream image contrasts, such as amyloid PET,
fractional anisotropy (FA) and mean diffusivity (MD) maps. However,
the PET synthesis error was found to be relatively high in brain re-
gions with high amyloid-𝛽 load, suggesting that synthetic PET cannot
replace amyloid PET imaging for clinical purposes. Chen et al. (2019)
developed a 2D U-Net model to generate full-dose amyloid PET images
from a combination of extremely low-dose amyloid PET and multi-
contrast MR images. Quantitative analyses revealed that this form of
imaging integration can successfully produce synthetic PET images with
standardized uptake value ratio (SUVR) values that are comparable to
those of the true full-dose PET images.

In Wei et al. (2019), Wei et al. introduced a sketcher-refiner GAN to
predict the PET-derived myelin content map from multimodal MRI. The
predictions showed results similar to the gold-standard PET-derived
maps, indicating its potential for clinical applications in the manage-
ment of Multiple Sclerosis patients. Similarly, Yaakub et al. presented
a two-stage deep learning framework to support the clinical assessment
of patients with focal epilepsy by identifying potential areas of hy-
pometabolism in FDG-PET scans (Yaakub et al., 2019). This framework
first trained a GAN to learn the mapping between healthy FDG-PET and
T1-weighted (T1w) MRI data. Then, pseudo-normal PET images were
synthesized from T1w MRI scans of patients with epilepsy for compar-
ison to the real PET scans. With the synthetic PET data, an average
sensitivity of 92.9% and 74.8% was observed in seven cases with MR-
visible epileptogenic lesions and 13 cases with non-contributory MR,
respectively.

Guo et al. demonstrated the potential of utilizing multi-contrast
MRI scans to synthesize 15O-water PET CBF images in a study pub-
ished in 2020 (Guo et al., 2020). A two-dimensional U-Net model
as employed, which took structural MRI and single-delay and multi-
elay ASL exams as inputs to generate a PET CBF map, allowing for
ore precise CBF measurements in MRI-only sites. Yousefi et al. (2021)
eveloped a residual CNN-based synthesis method to transform ASL
ata into PET CBF maps. The approach also incorporated T1w MRI
or anatomical information to increase the accuracy of PET synthesis.
uantitative measures and a blind reader study revealed a high level of

imilarity between the true and synthetic PET images, with an average
SIM of 0.85. All participants in the study were healthy controls
ithout any pathology. In Chen et al. (2020), Chen et al. employed
3

similar deep learning architecture to predict cerebrovascular reserve
(CVR, defined as the percent CBF increase from a baseline value after
acetazolamide administration) images from structural and perfusion-
based MRI scans as well as the baseline 15O-water PET CBF measured
before acetazolamide administration. Quantitative and comparative
analyses showed a high diagnostic performance in identifying vascular
territories with impaired CVR.

Hu et al. (2020) utilized a bidirectional GAN to transform MRI into
PET images while preserving the various brain structures of different
individuals. They achieved satisfactory quantitative results, though the
quality of the generated PET images was somewhat limited. Subse-
quently, Shin et al. (2020) applied the BERT algorithm (Devlin et al.,
2018) to generate synthetic amyloid and FDG-PET images from T1w
MRI data with minimal pre- and post-processing. Nevertheless, the
quantitative and qualitative PET prediction results were limited, mak-
ing it unsuitable for clinical applications. Also, a conditional GAN
(c-GAN)-based approach was introduced in Wang et al. (2018) to
generate full-dose PET images from low-dose ones. By testing the model
on brain data of both healthy subjects and mild cognitive impairment
patients, it was demonstrated to outperform baseline methods in terms
of both quantitative and qualitative results. Zhang et al. (2022) further
presented a 3D end-to-end generative adversarial network, which was
designed to learn a mapping function to transform MRI scans into
their underlying PET scans. The 3D multiple convolution U-Net (MCU)
generator architecture has been implemented in order to enhance the
quality of the synthesis results while preserving the diverse brain
structures of different subjects. By combining MRI and synthetic PET
scans, the accuracy of multi-class AD diagnosis has been increased by
approximately 1% when compared to using MRI alone.

3. Materials and data preprocessing

This study was approved by the Institutional Review Board of
Stanford University in accordance with the ethical standards of the
Helsinki Declaration for medical research involving human subjects,
and is HIPAA compliant. Written informed consent was obtained from
all participants prior to the study. Our dataset was acquired between
April 2017 and March 2022. Data were acquired from 131 subjects
(72 healthy controls [HC] and 59 cerebrovascular disease patients
[PT]) on a 3T PET/MR hybrid system (SIGNA PET/MR, GE Healthcare,
Waukesha, WI, USA) using an eight-channel head coil. Participants
were instructed to refrain from food or beverage containing caffeine
at least six hours before imaging.

Our dataset was composed of two cohorts, as illustrated in Fig. 1.
The first cohort included PET/MRI data from 30 healthy controls (HCs)
and 40 patients (PTs), with 4 cases excluded due to missing MRI or
PET scans. Each participant had a single visit, during which three
simultaneous PET/ASL acquisitions were acquired (two before and one
15 min after the intravenous administration of the vasodilator [aceta-
zolamide, ACZ] at a dose of 15 mg/kg up to a maximum of 1 g). The
second cohort included PET/MRI data from 42 HCs and 19 PTs, with
1 HC participant excluded due to missing PET scans. Of the 41 HCs,
31 underwent two identical sessions on different days. During each
session, two simultaneous PET/ASL acquisitions were acquired from the
participants (one before and one 15 min after ACZ administration). The
demographic information of the 126 participants involved in our study
is presented in Table 1.

MRI perfusion scans included two ASL acquisitions: a single-delay
(SD) and a multi-delay (MD) pseudo-continuous ASL (pCASL). Ad-
ditionally, dynamic susceptibility contrast (DSC) perfusion MRI was
performed following ACZ administration. MRI-based CBF maps were
generated from both SD-ASL and MD-ASL using a general kinetic
model (Buxton et al., 1998; Alsop et al., 2015). Non-iterative methods
were used to derive arterial transit time (ATT) from MD-ASL (Dai
et al., 2012). Proton density (PD) images were also collected as part
of the ASL acquisitions for quantitation. Magnetic resonance angiogra-
phy (MRA), gradient-echo (GRE), T1-weighted, and T2-weighted fluid-

attenuated inversion recovery (T2- FLAIR) were also acquired from all
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Fig. 1. Experimental design for measuring CBF using PET/MRI in two cohorts. In cohort 1, three simultaneous PET/ASL acquisitions were acquired from the participants in a
single visit (two scans before and one scan 15 min after the administration of the vasodilator [acetazolamide, ACZ]). In cohort 2, two simultaneous PET/ASL acquisitions were
acquired from the participants in each visit (one before and one 15 min after ACZ administration); Of the 41 HCs in cohort 2, 31 had two separate imaging sessions on different
days.
Table 1
Demographic information of the dataset. Age is presented as mean ± standard
deviation.

Group Controls Patients

Gender Male Female Male Female
Number 27 43 25 31
Age 36.0 (±9.6) 37.5 (±13.0) 48.0 (±17.0) 42.0 (±13.2)

Ethnicity

Hispanic or Latino Not Hispanic or Latino Unknown
12 68 46

Race

White Asian African-American One+ Race Other Unknown
60 42 8 6 6 4

participants. A summary of the parameters used for ASL and structural
MR imaging is presented in Table A.1.

In both cohorts, PET attenuation correction was performed using a
two-point Dixon MRI acquisition and an atlas-based algorithm (Zhao
et al., 2021). The quantitative PET CBF was measured using 15O-water
injection and an image-derived arterial input function (AIF) kinetic
model (Khalighi et al., 2018), along with a 1-compartment model (Zhou
et al., 2001) using PMOD software. The PET images were reconstructed
with a resolution of 1.56×1.56×2.78 mm3 and were corrected for signal
decay and attenuation. All images were co-registered to the T1w images
4

and normalized to the Montreal Neurological Institute (MNI) brain
template (Mazziotta et al., 2001) with 2 mm isotropic resolution using
Advanced Normalization Tools (ANTs) software (Tustison et al., 2014).
The ANTs was employed with the standard settings, which conducted
rigid and affine registrations. The brain tissue segmentation was per-
formed using FSL (Smith et al., 2004) and all 3D PET/MRI images were
cropped to 96 × 96 × 64 voxels for faster computations.

In order to facilitate a comprehensive evaluation of our proposed
MRI-to-PET translation model’s performance, the entire dataset com-
prising PET/MRI data from Cohorts 1 and 2 was divided into two
principal subsets, i.e. (n = 105 vs. 21). The first subset, referred to as the
‘‘model development and primary analysis’’ set, served as the primary
data for conducting extensive grid search, as well as for model training,
validation, and testing. Rigorous experimentation, optimization, and
analysis were performed on this set to ensure the development of a
robust and effective model. Conversely, the second subset, known as the
‘‘generalization set’’, was deliberately set aside and remained entirely
separate from the model training process. This distinct dataset was
reserved for the purpose of emulating real-life scenarios and assessing
the model’s ability to generalize and perform on unseen data. By
employing the ‘‘generalization set’’, we aimed to evaluate the model’s
performance beyond the confines of the training data, thus increasing
its reliability and applicability in practical settings.
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Fig. 2. Attention-based encoder–decoder network architecture for predicting PET CBF maps from multi-contrast MRI. The input to the network is an 8-channel tensor 𝐗 ∈ R8∶96×96×64

that includes data from T1w, T2-FLAIR, PD, SD-ASL, MD-ASL, SD-CBF, MD-CBF, and ATT. 15O-water PET CBF is the target image. The number of channels is shown above each
of the encoder and decoder blocks. Conv3D = 3D convolutional layer, GN = group normalization, PReLU = parametric rectified linear unit, Conv3DTranspose = transposed 3D
convolution layer, and MaxPooling3D = Max pooling operation for 3D data.
4. Methodology

4.1. Proposed network architecture

Fig. 2 shows the architecture of the proposed 3D convolutional
encoder–decoder network. The input to the network is an 8-channel
tensor 𝐗 ∈ Rℎ×𝑤×𝑑×8 that includes data from structural MRI (T1w,
T2-FLAIR) and perfusion-related MRI scans (ASL difference images
from SD-ASL and MD-ASL acquisitions, PD images obtained as part of
quantification for the SD-ASL CBF calculations), as well as quantified
metrics such as SD-CBF, MD-CBF, and ATT derived from MD-ASL. The
output of the network 𝐘 ∈ Rℎ×𝑤×𝑑×1 denotes the 15O-water PET CBF
map. To enable the transformation of multi-contrast MRI into PET CBF,
an attention-based encoder–decoder network is developed to serve as a
non-linear mapping function 𝑓𝜃 , such that 𝐘 = 𝑓𝜃 (𝐗), where 𝜃 contains
the network parameters to be learned.

In a previous study, we demonstrated the ability to predict the gold-
standard 15O-water PET CBF from a set of 16 input MRI contrasts using
a 2D convolutional neural network (Guo et al., 2020). In this study, we
improved the quality of synthetic PET by utilizing an attention-based
3D structure that capitalized on the spatial information across eight
volumetric MRI scans and captured the long-range feature interactions
necessary for accurate predictions. However, the application of 3D
models to brain image-to-image translation problems is limited by
the scarcity of annotated brain imaging data and the associated high
computational cost. Therefore, we employed a larger cohort of healthy
controls and cerebrovascular disease patients for the current study
and applied several data augmentation strategies to further expand
the overall number of PET/MRI data samples needed for improved
translation performance. This included flipping (horizontally and ver-
tically), shifting (horizontally and vertically), and rotating (clockwise
and anti-clockwise) the input and output images, resulting in an eight-
fold increase in the dataset size. Finally, a custom loss function was
carefully designed to maintain contextual and structural information
in input multi-contrast MRI scans and thus optimize the performance
of the MRI-to-PET translation network.
5

The proposed attention-guided encoder–decoder network,
illustrated in Fig. 2, utilizes 3D convolutional neural networks to inte-
grate multiple MRI scans to generate high-quality synthetic PET scans.
This network is composed of three modules: the encoder, decoder, and
attention mechanisms. The encoder performs a series of consecutive
3D convolutions to compress the input multimodal MRI volumes into
a low-resolution representation map, while the decoder applies 3D
deconvolutions and upsampling operations to the representation map to
generate the 15O-water PET CBF maps. Attention mechanisms are also
employed to identify relevant aspects of the input MRI scans at both the
channel and spatial levels, resulting in a fine-grained quality prediction.
To assess the influence of the input MRI sequences on the PET CBF
prediction, the model was trained and tested using structural MRI only,
perfusion MRI only (i.e., the ASL sequences), and a combination of
structural and perfusion MRI images.

4.2. Attention mechanisms

Convolutional encoder–decoder networks are widely utilized in im-
age segmentation and image-to-image translation algorithms. However,
the use of predefined convolutional filters restricts the encoder–decoder
networks from learning global information while only leveraging local
information (Zhang et al., 2019). This results in a non-trivial bias
by discarding some of the essential features needed for accurate per-
formance. Increasing the size of convolutional filters and deepening
the encoder–decoder architectures are some of the naive solutions
introduced to improve the image segmentation or synthesis perfor-
mance. Nevertheless, these solutions may drastically increase the com-
putational complexity without any discernible improvement in the
results.

Attention mechanisms have been proposed as an advanced solution
to capture long-range feature interactions and improve the performance
of convolutional encoder–decoder networks (Oktay et al., 2018). In the
context of MRI-to-PET synthesis, 3D MRI and PET images contain both
brain and non-brain voxels (voxels outside the brain margins). Also, for
patients with cerebrovascular disorders, abnormal lesions may only be
present in specific regions of interest (ROIs) in certain MRI scans. To
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Fig. 3. The schematic of an attention mechanism used in the 3D convolutional encoder–decoder network. Input features (𝐅𝐢) are multiplied element-wise by attention coefficients
(𝛼) computed in the attention module. The gating features (𝐅𝐠) collected from a lower layer of the network are used to identify the spatial regions of interest with relevant
activations and contextual information, GN denotes group normalization.
address this, we propose to use an attention mechanism, depicted in
Fig. 3, to enable the encoder–decoder network to focus on both brain
voxels and ROIs of varying sizes and appearances.

We opted for an additive soft attention mechanism, which gives
different weights to the various regions of the feature map. The regions
with higher relevance are given larger weights, while those with less
relevance are assigned smaller weights. During the training process,
the weights of the soft attention are optimized to enable the model to
determine which regions should be given more attention. This attention
mechanism takes two inputs, the input features (Fi) from the encoder
and the gating features (Fg) from a coarser scale of the decoder. Since
maximum pooling operations are applied recursively in the downsam-
pling path of the network, Fg generally has smaller dimensions and
better feature representation than Fi, as Fg originates from deeper
layers in the network.

A strided 3D convolution is used to reduce the dimensions of Fi,
producing an intermediate feature map Fint . Additionally, a regular
1 × 1 × 1 3D convolution is applied to the gating features, producing
a separate intermediate feature map. These two feature maps are
then element-wise summed, with aligned weights becoming larger and
unaligned weights becoming relatively smaller. The resultant tensor is
then passed through a rectified linear unit (ReLU) activation function,
followed by a 1 × 1 × 1 3D convolution and a sigmoid function, which
produces the attention coefficients (𝛼). Lastly, the attention coefficients
are upsampled to the original dimensions of Fi and then element-
wise multiplied to Fi, thereby scaling the different regions of the input
feature map according to their relevance.

Since different MRI sequences and spatial patterns impose different
effects on the quality of synthesized PET CBF maps, the proposed
encoder–decoder network was equipped with an additive soft attention
mechanism, allowing it to investigate the pertinent aspects of the input
MRI data at both the channel and spatial levels for a fine-grained
quality prediction.

4.3. Image preprocessing and rescaling techniques

In order to preprocess the images, various rescaling methods, in-
cluding data normalization and standardization, were explored.
Through a rigorous analysis, it was determined that the most effective
approach involved dividing all images by their mean value and multi-
plying them by a scalar factor. This rescaling technique yielded notable
improvements in our experimental outcomes. The rationale behind
selecting the scalar factor was to reduce pixel values for enhanced train-
ing of neural networks. Smaller pixel values offer several advantages,
such as narrowing the overall value range, promoting convergence
during training, and mitigating the impact of outliers. To determine the
optimal scalar factor, an extensive grid search was conducted, involving
systematic experimentation with different scalar values. The iterative
process revealed that scalar values of either 0.05 or 0.1 consistently
produced the most favorable outcomes in terms of performance metrics
and model convergence.
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4.4. Image quality assessment

The similarity between the synthetic and reference PET CBF images
were evaluated using normalized root-mean-square error (NRMSE),
structural similarity index (SSIM), and peak signal-to-noise ratio
(PSNR), defined as:

𝑁𝑅𝑀𝑆𝐸 = 1
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
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(1)

where 𝑥 and 𝑦 refer to the reference and synthetic PET scans, 𝑥𝑚𝑎𝑥 and
𝑥𝑚𝑖𝑛 are the maximum and minimum intensity values of the reference
PET, 𝑥(𝑖, 𝑗, 𝑘) and 𝑦(𝑖, 𝑗, 𝑘) are the reference and predicted voxel inten-
sity values, and 𝑚, 𝑛, and 𝑝 are the dimensions of reference or predicted
PET images.
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where 𝜇𝑥 and 𝜇𝑦 denote the mean values of reference and synthetic
PET images, 𝜎2𝑥 and 𝜎2𝑦 denote the variance of reference and synthetic
PET images, 𝜎𝑥𝑦 is the covariance of both PET images, 𝑐1 and 𝑐2 are
two constants used to stabilize the division with weak denominator,
𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2, 𝑘1 = 0.01, 𝑘2 = 0.03, and 𝐿 is the dynamic
range for the voxel intensity values of PET images.
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where 𝑦𝑚𝑎𝑥 is the maximum voxel intensity value of the image.

4.5. Custom loss function

In medical image translation problems, the loss function is used
to quantify the accuracy of the predictive model in reproducing the
target image. In the case of MRI-to-PET translation, the loss function is
dependent on two inputs: the true PET image and the synthetic PET
image produced by the encoder–decoder network. A lower value of
the loss function indicates a more accurate prediction, while a higher
value suggests a poor performance. The mean squared error (MSE)
is a commonly used loss function for image synthesis, but it is not
suitable for medical images that are prone to artifacts and ghosting.
Additionally, MSE treats all regions of the medical image equally,
which may result in fairly good overall prediction but poorer prediction
in the regions of most interest (e.g., abnormal lesions that are crucial
for the disease assessment). To address this issue, more appropriate loss
functions have been developed to better characterize the structure of
the synthesized PET in comparison to the reference PET scan.

This study introduces a specifically designed loss function to im-
prove the accuracy of the proposed encoder–decoder network. This loss
function is a combination of several loss components that work coop-
eratively to drive the network toward the most accurate representation
of PET images.
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(1) Voxel-wise reconstruction loss: The mean absolute error (MAE) is
used as a reconstruction loss that measures the voxel-wise similarity
between actual and synthetic images, and it is defined as:
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where 𝑥(𝑖, 𝑗, 𝑘) and 𝑦(𝑖, 𝑗, 𝑘) are the voxel intensity values of reference
and synthetic PET images.

Using the MAE as a reconstruction loss is beneficial in two ways: it
minimizes the difference between the target and predicted images at a
voxel level, and it regularizes the network to ensure a robust prediction
performance when dealing with data containing outliers and artifacts.

(2) Perceptual loss: In addition to the reconstruction loss, the SSIM
loss (Zhao et al., 2016) is used as a perceptual loss to maximize the
structural similarity between both real and synthetic images.

The SSIM can efficiently measure the perceptual difference be-
tween images using three characteristics: luminance, contrast, and
structure (Wang et al., 2004). Using it in training image translation
models leads to better quality and more realistic synthetic images. The
perceptual loss 𝑝 is defined as:

𝑝 = 1 − 𝑆𝑆𝐼𝑀 (5)

The overall MRI-to-PET translation loss, , is defined as the
weighted sum of both reconstruction and perceptual loss components:

 = 𝜆𝑟𝑟 + 𝜆𝑝𝑝 (6)

where 𝜆𝑟 and 𝜆𝑝 are the weights for reconstruction and perceptual loss
terms, respectively.

Hyperparameter optimization through a grid search has revealed
that a weighting of 0.2 for 𝜆𝑟 and 0.8 for 𝜆𝑝 yields prediction results
that closely resemble subjective ratings.

4.6. Hyperparameter tuning and model selection

In our study, we employed a grid search combined with cross-
validation to determine the optimal hyperparameters for our convo-
lutional encoder–decoder network. The hyperparameters considered in
the grid search included the depth of the network (with options of 3 and
4), the number of convolutional filters in both the encoder and decoder
modules, the kernel size (3 × 3 × 3, 5 × 5 × 5, and 7 × 7 × 7), the weights
assigned to the reconstruction and perceptual loss terms, the batch size
(ranging from 4 to 32), the learning rate, various data normalization
methods as described in Section 3, and different combinations of 16
input MRI contrasts.

During the grid search, we divided the ‘‘model development and
primary analysis’’ dataset into training, validation, and test sets (see
Fig. 1). The training set was used to train the encoder–decoder network,
while the validation set enabled us to assess the performance of dif-
ferent hyperparameter configurations. Cross-validation was performed
using a 5-fold setup, where each fold represented a distinct partition of
the training set.

For each combination of hyperparameters, the neural network was
trained on the training portion of the training set and evaluated on the
validation set. This process was repeated for each fold, and the per-
formance metrics (including NRMSE, SSIM, and PSNR) were averaged
across the folds to obtain a representative measure for each hyper-
parameter configuration. By comparing the performance of different
configurations based on the average evaluation metrics, we identified
the optimal set of hyperparameters. The selected model, trained using
the best hyperparameters, was then evaluated on the independent test
set to assess its generalization ability.

To ensure balanced representation between healthy controls and
patients, the dataset was stratified based on the number of individuals
in each group during the partitioning process. The stratified splits were
implemented to achieve proportional allocation of healthy controls
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and patients in the training, validation, and test sets. However, it
is important to note that demographic variables beyond the binary
grouping of healthy controls and patients were not considered in the
stratification process. Future studies could explore the influence of
additional demographic factors, such as age or gender, on the model’s
performance.

This grid search combined with stratified cross-validation methodol-
ogy allowed us to systematically explore a wide range of hyperparame-
ter values and select the optimal configuration for our encoder–decoder
network, enhancing the effectiveness and reliability of our proposed
approach.

4.7. Network implementation

The proposed convolutional encoder–decoder network was imple-
mented in Python with the TensorFlow framework. The network en-
coder had four convolutional layers, with the number of filters being
64, 128, 256, and 512, respectively. For each convolutional layer, the
kernel size was 5 × 5 × 5. The training and testing of the network were
carried out on two NVIDIA Tesla V100-PCIE Volta GPUs. The custom
loss function described in Section 4.5 was employed to optimize the
network’s weights and improve its predictive power.

In our experiments, the Nesterov Adam optimizer (Dozat, 2016), an
improved variant of the Adam optimization algorithm (Kingma and Ba,
2014), was used with a learning rate of 0.0002 and a batch size of 4.
The encoder–decoder network was trained using the proposed custom-
designed loss function for 150 epochs, with an early stopping of 20
epochs. Early stopping is a form of regularization used to terminate
training before the model starts to overfit (Raskutti et al., 2014).

4.8. Identifying regional CBF abnormalities

To assess the feasibility and clinical value of the proposed MRI-to-
PET translation method, the utility of synthetic PET images was tested
for identifying regional CBF abnormalities in cerebrovascular disease
patients. CBF was measured in 10 brain regions, which were divided
into anterior, three middle, and posterior parts in both the right and
left hemisphere, based roughly on the Alberta Stroke Program Early CT
Score (ASPECTS; see Fig. B.1) (Barber et al., 2000). The CBF measured
in these 10 vascular territories was used to identify any regional CBF
abnormalities and affected brain areas in the patients with cerebrovas-
cular diseases. Since the global and regional values of CBF increase
substantially after the administration of acetazolamide (Diamox), the
threshold CBF used to detect abnormal vascular territories in the CBF
maps obtained before the acetazolamide administration was relatively
lower than that used after the acetazolamide administration.

For the pre-diamox and post-diamox measurements, CBF values
were obtained from the ten ASPECTS brain regions from all healthy
control participants in the ‘‘model development and primary analysis’’
dataset. The mean and standard deviation of CBF values were com-
puted for each brain region across all healthy control participants.
Subsequently, a set of thresholds, including the example threshold of
three standard deviations below the mean CBF values, were established.
These thresholds were used to generate ground truth labels for the cor-
responding ten brain regions of the patients in the ‘‘generalization set’’
by comparing the mean CBF values of these regions to their respective
thresholds. A value below the threshold indicated an abnormal brain
region with significantly reduced CBF (label ‘1’), while a value above
or equal to the threshold indicated a normal brain region (label ‘0’). In
the evaluation of synthetic PET CBF for the same patients, an iterative
process involved varying threshold values (ranging from 20 to 100
ml/100 g/min, with an increment of 1) to create predicted labels by
comparing the CBF values to each threshold. True Positive Rate (TPR)
and False Positive Rate (FPR) were calculated for each threshold. By
computing the Area Under the Curve (AUC) for the Receiver Operating
Characteristic (ROC) curve using the TPR and FPR values at different
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thresholds, the performance of the model in distinguishing abnormal
brain regions with reduced CBF from normal regions was assessed
separately for pre-diamox and post-diamox measurements.

The diagnostic performance of both synthetic PET CBF and ASL-
derived CBF (SD-CBF and MD-CBF) maps was evaluated in both pre-
diamox and post-diamox conditions using different threshold CBF val-
ues, which were defined as two, three, and four standard deviations
below the mean CBF values in the healthy control participants. The
ROC curves were used to demonstrate the classification performance
of synthetic PET CBF, SD-CBF, and MD-CBF at different discrimination
thresholds before and after acetazolamide administration. The AUC
scores were also calculated to assess the diagnostic ability of synthetic
PET CBF, SD-CBF, and MD-CBF to identify the vascular territories
with abnormally low CBF. Additionally, the classification accuracy,
sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) were calculated at the model threshold that
achieved the highest Youden’s index (Youden, 1950).

4.9. Statistical analyses

The 10 ASPECTS brain territories were surveyed to compare the
average CBF of healthy controls and cerebrovascular disease patients.
Bland-Altman analyses were conducted to examine the agreement of
regional CBF between the true 15O-water PET CBF maps and the
synthesized PET CBF maps generated by our model, as well as the
SD-CBF maps and MD-CBF maps measured with SD-ASL and MD-ASL,
respectively.

Joint intensity scatter plots were also used to study the relationship
between the regional CBF measurements before and after acetazo-
lamide administration. Pearson’s correlation coefficient (r) was adopted
to measure the strength of the linear association between the true
15O-water PET CBF and each of the synthetic PET CBF, SD-CBF, and
MD-CBF. It is worth noting that SD-CBF and MD-CBF are directly avail-
able from MRI, and any improvement from their prediction represents
the added value of the trained network.

Lastly, cluster-adjusted heteroscedastic linear regression (Harvey,
1976) was employed to analyze the CBF measurement error and assess
the influence of group type (control/patient) and scan time (PreDi-
amox/PostDiamox) on both bias and precision. Statistical analyses were
performed using Stata 16.1 (StataCorp LP, College Station, TX) and R
4.1.1 (r-project.org), with a significance level of 0.05.

5. Experiments and results

We evaluate the quantitative and qualitative performance of the
proposed MRI-to-PET translation approach, demonstrating how syn-
thetic images can support clinical decisions by improving the diagnosis
and assessment of neurological conditions. In addition, ablation exper-
iments are conducted to assess the effectiveness and contributions of
different loss functions and the role of attention mechanisms. Lastly,
we study the relative impact of different input MRI scans on the overall
quality of the synthetic PET images.

5.1. Experimental setup

Fig. 1 illustrates the analysis workflow for model training, vali-
dation, and independent testing. The database of both cohorts was
divided into two separate sets. The first set, which included simulta-
neous PET/MRI data from 60 HCs and 45 PTs, was used for model
development and primary analysis. Fivefold cross-validation was used
to evaluate the model’s performance on different portions of the data,
with three folds used for training, one for validation, and one for
testing. To avoid data leakage, all data from the same subject (both
baseline and post-acetazolamide) were included in any of the training,
validation, and testing sets. The MRI scans selected to be used as inputs
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Table 2
PET synthesis results for healthy controls and cerebrovascular disease patients. The
model is evaluated using five-fold cross-validation, and the quantitative metrics are
computed for the whole brain region. ↑/↓ denotes that higher/lower values correspond
to better quality of synthetic PET. Results are presented as mean ± standard deviation
(std).

Participants NRMSE ↓ PSNR (dB) ↑ SSIM ↑

mean ± std mean ± std mean ± std

Controls 0.024 ± 0.010 40.16 ± 1.09 0.940 ± 0.008
Patients 0.062 ± 0.015 37.32 ± 1.17 0.912 ± 0.012

Average 0.044 ± 0.015 38.80 ± 1.18 0.924 ± 0.014

for the model are T1-w, T2-FLAIR, SD-ASL, MD-ASL, PD, ATT, SD-CBF,
and MD-CBF.

To assess the model’s ability to reproduce results in practice, the
second set of data, referred to as the ‘‘Generalization Set’’, was used to
evaluate the model’s performance on unseen data from 21 participants
(10 HCs and 11 PTs). A set of agreement quantification methods
(i.e., Bland-Altman, joint intensity scatter plots) was used to study the
relationship between the regional CBF values of actual and synthetic
PET scans, and to determine if synthetic CBF maps can be used to detect
regional CBF abnormalities.

5.2. Quantitative results

The quantitative performance of our model was evaluated using
NRMSE, PSNR, and SSIM. Theoretically, lower NRMSE values and
higher PSNR and SSIM values indicate better quality of the synthetic
images. The average quantitative results for both healthy controls and
cerebrovascular disease patients among the test sets were computed
based on the whole three-dimensional brain region and reported in
Table 2.

Results from the PET synthesis experiments indicated a consider-
able difference between healthy controls and patients in terms of all
performance metrics, with the former performing better. This could
be attributed to the structural abnormalities associated with vascular
diseases, which have a different appearance in different MRI contrasts.
Another possibility could be differences in baseline image quality be-
tween the two groups, though there were no obvious differences noted
visually. The average results, shown in Table 2, demonstrated that our
optimized encoder–decoder network can efficiently integrate multiple
MRI exams and produce high-quality synthetic PET images.

In order to assess the efficacy of the proposed encoder–decoder
network (‘‘ours’’), we compare its performance with other state-of-the-
art image synthesis networks on the same dataset, including 2D U-Net,
2D c-GAN, 2D SC-GAN, 3D U-Net, 3D c-GAN, and 3D SC-GAN. The
2D U-Net was implemented with the same network parameters as
in Guo et al. (2020). The 3D U-Net was implemented similarly with 3D
convolutional filters. The 2D c-GAN and 3D c-GAN were implemented
according to Wang et al. (2018). The 2D SC-GAN and 3D SC-GAN were
developed based on the method described in Lan et al. (2021). To
ensure a fair comparison, we used the same training and validation sets
for both the baseline methods and our proposed method. The quan-
titative evaluation of these networks as well as our encoder–decoder
network is presented in Table 3. The results reveal that 2D c-GAN
and 2D SC-GAN achieve on-par or slightly better performance than the
2D U-Net with minimal differences in the quality assessment metrics.
Moreover, 3D U-Net, 3D c-GAN, and 3D SC-GAN produce comparable
PET synthesis results, suggesting that simple encoder–decoder networks
may be more practical than unstable GANs for this particular medical
image generation problem.

Furthermore, the quantitative measures presented in Table 3 il-
lustrate that the 3D implementations of U-Net and GANs outperform
their 2D counterparts, attributed to the heightened level of spatial in-
formation present in 3D images. Our attention-based encoder–decoder
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Fig. 4. MRI-to-PET prediction results for healthy control and cerebrovascular disease patients in the axial plane: Examples of input multi-contrast MRI scans, output synthetic PET,
reference PET, and corresponding magnified (×3) absolute error maps. PET CBF is quantified in milliliters per 100 g of brain tissue per minute (ml/100 g/min).
Table 3
Quantitative comparison between our model and baseline models.

Mathod NRMSE ↓ PSNR (dB) ↑ SSIM ↑

mean ± std mean ± std mean ± std

U-Net (2D) 0.204 ± 0.034 30.45 ± 1.92 0.862 ± 0.030
c-GAN (2D) 0.205 ± 0.032 31.70 ± 2.04 0.865 ± 0.028
SC-GAN (2D) 0.198 ± 0.032 32.05 ± 2.02 0.865 ± 0.033
U-Net (3D) 0.168 ± 0.024 33.86 ± 1.35 0.880 ± 0.015
c-GAN (3D) 0.168 ± 0.026 34.00 ± 1.42 0.878 ± 0.016
SC-GAN (3D) 0.150 ± 0.21 35.04 ± 1.39 0.888 ± 0.022
Ours 0.044 ± 0.015 38.80 ± 1.18 0.924 ± 0.014

network, incorporating attention mechanisms and a tailored loss func-
tion, exhibits superior performance compared to other methods across
all performance metrics, as evidenced by our visual assessment (Fig. 7).
The performance of our PET CBF synthesis approach highlights its
capacity to harness the structural and contextual information inher-
ent in multi-contrast MRI data, thereby enhancing the quality of the
inferenced PET images.

5.3. Qualitative results

We demonstrate the significance of combining structural and per-
ceptual information in multi-contrast MRI data through optimizing a
custom loss function and utilizing attention mechanisms. To illustrate
our findings, we present a qualitative comparison between the synthetic
and actual PET images for healthy controls and cerebrovascular disease
patients in Fig. 4. The top panel demonstrates the model’s successful
performance on a normal subject without any abnormal brain lesions,
with the generated PET image closely resembling the ground-truth PET
image. The remaining three panels illustrate the model’s performance
on patients with ischemic stroke, Moyamoya disease, and intracranial
atherosclerotic steno-occlusive disease (ICSD). The synthetic PET im-
ages and corresponding magnified absolute error maps show that the
proposed network can accurately synthesize abnormal brain lesions in
synthetic PET images.
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Fig. 5 illustrates the qualitative visualizations of synthetic PET scans
for the same representative subjects along coronal plane. The PET CBF
results for the healthy control group demonstrate accurate predictions
in the coronal view of the brain. However, due to the limited abnormal
brain regions relative to the whole brain volume, the model tends
to overfit to normal regions for cerebrovascular disease patients with
impaired regional CBF. Consequently, the prediction performance for
areas with altered CBF (e.g., ischemic penumbra and infarcted tissue)
is somewhat inferior to that in the normal brain areas. Overall, our PET
synthesis approach can effectively improve the quality and clinical util-
ity of the structural and perfusion MRI exams, producing high-quality
synthetic 15O-water PET CBF maps without the use of radioactive
tracers.

5.4. Ablation study

Ablation studies are a valuable method for investigating knowledge
representations in encoder–decoder networks and are especially helpful
in examining network performance and reliability against structural
artifacts and ghosting. We conducted experiments to evaluate the ef-
fectiveness and contributions of different network settings and training
strategies. We experimented with several loss functions, including MSE,
MAE, and SSIM, as well as a custom loss function with a weighted
summation of different metrics, to optimize the quality of synthesized
PET CBF maps. We further studied the importance of the attention
mechanisms used by the network’s decoder for PET CBF prediction
solely based on a subset of the encoder’s feature maps. To be precise,
in this section, we not only removed parts of the network but also
substituted them with more appropriate alternative constructs.

Fig. 6 illustrates the PET prediction performance of different loss
functions and network settings, as well as the incremental perfor-
mance gain of each component. The reference PET, synthetic PET,
and corresponding magnified absolute error map produced at different
network settings are displayed for both healthy subjects and patients
with cerebrovascular diseases (Fig. 6(a)). It was observed that the use
of more appropriate loss functions led to a steady improvement in
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Fig. 5. MRI-to-PET prediction results for healthy control and cerebrovascular disease patients in the coronal plane: Examples of input multi-contrast MRI scans, output synthetic
PET, reference PET, and corresponding magnified (×3) absolute error maps. PET CBF is quantified in ml/100 g/min.
Fig. 6. Examples of PET CBF prediction (in ml/100 g/min) for healthy controls and cerebrovascular disease patients at different loss functions and network settings: (a) example
results of the reference PET CBF against synthetic PET CBF and magnified (×3) absolute error maps at different settings in the axial plane, (b) quantitative comparison between
different loss functions and network elements.
both quantitative and qualitative CBF prediction results (Fig. 6(b)).
Furthermore, attention mechanisms were found to be essential in al-
lowing the network to focus more on the relevant aspects of the input
data at the channel and spatial levels, thus resulting in improved
synthetic PET CBF quality. In conclusion, a 3D convolutional encoder–
decoder network utilizing attention mechanisms and a custom-designed
loss function was able to effectively exploit both channel-level and
spatial-level information from multi-contrast MRI inputs to generate
high-quality synthetic PET CBF maps.

5.5. CBF quantification assessment

The statistical significance of experimental results was evaluated
using a set of paired comparison analyses. The generalization set was
10
used to examine the levels of agreement and correlation between re-
gional CBF values in true 15O-water PET CBF measurements and those
of synthetic PET CBF, SD-CBF, and MD-CBF maps. The generalization
set included 60 simultaneous PET/MRI scans acquired from 10 healthy
controls and 11 cerebrovascular disease patients. The 10 control cases
had a total of 32 PET/MRI scans (18 pre-acetazolamide and 14 post-
acetazolamide) and the 11 patients had a total of 28 PET/MRI scans (17
pre-acetazolamide and 11 post-acetazolamide). Overall, 600 vascular
territories from the 60 PET/MRI observations were used to compare
synthesized PET CBF obtained by an encoder–decoder network and
MRI-derived CBF measurements.

Fig. 8 displays the Bland-Altman plots of regional CBF values for
healthy control and cerebrovascular disease patients at PreDiamox and
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Fig. 7. Qualitative comparisons of different deep learning models in synthesizing PET CBF maps from multi-contrast MR images. CBFs are quantified in ml/100 g/min. The
proposed method produces more accurate predictions than the standard 3D U-Net, 3D c-GAN, and 3D SC-GAN, particularly for those with abnormal lesions.
Fig. 8. Bland-Altman plots of the mean CBF in the ASPECTS vascular territories for PreDiamox (top panel) and PostDiamox (bottom panel) measurements. Each panel includes
three plots showing the agreement between the reference PET CBF (True PET) and (i) the PET CBF produced by our model (Synthetic PET, left), (ii) CBF derived from single-delay
ASL (SD-CBF, middle), and (iii) CBF derived from multi-delay ASL (MD-CBF, right).
PostDiamox measurements. The plots indicate the level of agreement
between the reference PET CBF maps and each of the synthetic PET
CBF, SD-CBF, and MD-CBF maps. At PreDiamox measurements, the
regional CBF values of the synthetic PET had lower bias and variance
than the ASL-derived CBF maps, demonstrating the added value of the
11
trained network. The synthetic PET CBF maps were only 3.1 ml/100
g/min lower than the true PET CBF maps with 95% confidence intervals
of −3.7 & 9.9 ml/100 g/min. For PostDiamox measurements, the
synthetic PET CBF maps had an average bias of 3.7 ml/100 g/min
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Fig. 9. Joint plots of mean CBF in ASPECTS vascular territories for PreDiamox (top panel) and PostDiamox (bottom panel) measurements: Each panel displays three plots for the
relationship and distribution histogram between True PET and Synthetic PET (left), SD-CBF (middle), and MD-CBF (right). The regression line and Pearson correlation coefficient
(r) are added to each of the joint plots.
Table 4
PET synthesis error (true PET CBF − synthetic PET CBF): Bias and precision in synthetic PET measurements for healthy controls and patients at different scan times. Mean and
SD represent the bias and variability in the measurements, respectively. No. refers to the number of PET/MRI observations.

Group Controls Patients Average

Scan time PreDiamox PostDiamox Total PreDiamox PostDiamox Total PreDiamox PostDiamox Total

Mean 1.82 2.62 2.22 4.25 4.88 4.56 3.10 3.75 3.42
SD 2.56 3.20 2.90 3.68 5.25 4.56 3.47 4.48 4.04
No. 180 140 320 170 110 280 350 250 600
with 95% confidence intervals of −5.0 & 12.5 ml/100 g/min, indicating
better synthesis results than ASL-derived CBF maps.

Results of the PET CBF quantification performance for both healthy
control and patient groups are outlined in Appendix C. Fig. C.1 indi-
cates that the PET synthesis performance in patients was inferior to
that in healthy control participants, with an average bias of 4.6 ml/100
g/min and 95% confidence intervals of −4.4 to 13.5
ml/100 g/min, in comparison to an average bias of 2.2 ml/100 g/min
and 95% confidence intervals of −3.5 to 7.9 ml/100 g/min. The Bland-
Altman plots in Fig. C.1 also demonstrate that the mean CBF was not
significantly different among the CBF measurement types; however, the
SD-CBF and MD-CBF measurements had a greater variability than the
synthetic PET CBF measurements.

Table 4 presents the PET synthesis error for healthy controls and
patients before and after acetazolamide administration. The results in-
dicate that both bias and precision in synthetic PET measurements were
noticeably different between groups and timepoints (all four marginal
comparisons with p<0.001). Healthy controls exhibited significantly
lower bias and precision than patients for both baseline and post-
acetazolamide timepoints. Additionally, the PET synthesis performance
was moderately better at baseline conditions.

The correlation between regional CBF measurements in acquired
15O-water PET and those of synthetic PET and ASL-derived CBF maps
12
was also investigated in this study. Fig. 9 describes the density and joint
scatter plots of regional CBF values in pre-acetazolamide (top panel)
and post-acetazolamide (bottom panel) measurements. Each panel in
Fig. 9 displays three plots for the relationship and distribution his-
togram between true 15O-water PET CBF and synthetic PET CBF (left),
SD-CBF (middle), and MD-CBF (right). The regression line and Pear-
son’s correlation coefficient (r) are included in each of the joint plots.
The results indicate a high positive correlation between true and syn-
thetic PET’s regional CBF values, with Pearson’s correlation coefficient
of 0.96 and 0.97 for the pre-acetazolamide and post-acetazolamide
scans, respectively. The ASL-derived CBF maps, on the other hand,
showed a moderate positive correlation (r = 0.45–0.53) at baseline and
a weak positive correlation (0.34–41) for post-acetazolamide measure-
ments.

5.6. Clinical significance – abnormal region identification

The diagnostic performance of synthetic PET CBF and ASL-derived
CBF maps was evaluated by testing three threshold CBF values, which
were 2, 3, and 4 standard deviations below the mean CBF values in
healthy control participants. Fig. 10 demonstrates the classification
performance of synthetic PET CBF, SD-CBF, and MD-CBF to identify
reduced CBF regions in pre-acetazolamide and post-acetazolamide CBF
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Fig. 10. ROC curves and AUC scores for identifying vascular territories with reduced CBF in Prediamox (top panel) and PostDiamox (bottom panel) measurements for cerebrovascular
patients: Each panel includes three plots showing the classification performance at three different threshold values, (i) Threshold at 2 standard deviation (STD) below the mean
CBF of healthy control participants (left), (ii) Threshold at 3 STD below mean CBF (middle), and (iii) Threshold at 4 STD below mean CBF (right). Each plot includes three ROC
curves showing the classification performance of Synthetic PET (blue curve), SD-CBF (red curve), and MD-CBF (green curve).
measurements. The plots show the ROC curves and AUC scores to
differentiate between the vascular territories with abnormally low CBF
and those with normal CBF. The synthetic PET CBF maps generated by
our model demonstrate superior performance to ASL-derived CBF maps
at all tested thresholds before and after acetazolamide administration.

The threshold values for impaired PET CBF were defined as three
standard deviations below the mean PET CBF values in the healthy
control participants. The AUC scores for synthetic PET CBF, SD-CBF,
and MD-CBF in pre-acetazolamide measurements were 0.94, 0.65, and
0.55 respectively, with a threshold CBF of three standard deviations
below the mean in healthy control participants. Similarly, in post-
acetazolamide measurements, the AUC scores for synthetic PET CBF,
SD-CBF, and MD-CBF were 0.84, 0.55, and 0.56 for the same threshold
CBF. Irrespective of the threshold of impaired PET CBF, the AUC score
of synthetic PET CBF was higher than that of SD-CBF and MD-CBF. This
pattern was observed for milder or more severe CBF thresholds as well,
with synthetic PET CBF consistently outperforming ASL-derived CBF
maps.

Fig. 11 also shows radar charts of the classification performance
measures for SD-CBF, MD-CBF, and synthetic PET CBF at the threshold
of three standard deviations below the mean CBF. The metrics of
classification accuracy, sensitivity, specificity, PPV, and NPV were used
to evaluate the detection performance of abnormal brain regions in
pre-acetazolamide and post-acetazolamide CBF measurements. These
results demonstrate the diagnostic value of synthetic PET and how
the proposed model improved the clinical utility of MRI-derived CBF
measurements at both baseline and after vasodilator administration.
Our PET synthesis model offers a great promise for medical diagnos-
tics, showing accurate identification of regional CBF abnormalities in
patients with cerebrovascular diseases.

5.7. PET synthesis from perfusion MRI without structural information

In this section, we investigate the PET synthesis performance of
the proposed encoder–decoder network when provided with ASL MRI
images only as inputs. Yousefi et al. (2021) have previously studied
the ASL-to-PET translation problem, where residual CNN was used
to generate PET data from 2D ASL and T1w images. Yousefi et al.
conducted a seven-fold cross-validation to evaluate the performance of
their PET synthesis network on a dataset consisting of healthy control
13
participants, obtaining an average SSIM of 0.85 ± 0.08 and PSNR of
21.8 ± 4.5 dB. We implemented and tested the same CNN network
on our dataset, which included both healthy controls and patients, and
found that it produced lower prediction results of 0.82 ± 0.04 SSIM and
23.6 ± 3.1 dB PSNR. Our method utilized single-delay and multi-delay
ASL images as the sole input to the encoder–decoder network, eliminat-
ing the need for anatomical information from any of the structural MRI
scans. Our experiments yielded improved quantitative results, with an
average SSIM and PSNR of 0.86 ± 0.03 and 30.4 ± 2.3 dB, respectively.

Fig. 12 shows examples of ASL-to-PET prediction for both healthy
controls and cerebrovascular disease patients in axial and coronal
planes. It can be observed that our model produced adequate PET CBF
maps for healthy controls, in which the magnified absolute error maps
show an insignificant difference between the true and synthetic PET
CBF maps. However, an inferior PET synthesis performance was seen
in patients, showing overestimation for the brain regions with reduced
CBF. In normal brain territories, the CBF was either underestimated
or overestimated, showing a non-trivial discrepancy between true and
synthetic PET images. The absence of anatomical structure (from T1w
or T2-FLAIR) is probably the reason behind the performance deteriora-
tion. Further, the Bland-Altman plots of Fig. 13 illustrate the agreement
between the mean CBF in true and synthetic PET CBF maps for both
healthy controls and cerebrovascular disease patients in PreDiamox and
PostDiamox measurements when only ASL data is used as an input to
our network. It is evident that the lack of anatomical data results in
higher variability in the predicted CBF values at both PreDiamox and
PostDiamox measurements.

5.8. PET synthesis from structural MRI without ASL imaging

Lastly, we evaluate the feasibility of synthesizing PET CBF maps
from structural MRI including T1w and T2-FLAIR exams, but excluding
data from the perfusion imaging sequences. Fig. 12 shows examples of
structural MRI-to-PET translation results for healthy controls and cere-
brovascular disease patients. Our model yields a reasonable similarity
between true and synthetic PET CBF maps, with the whole-brain region
being slightly overestimated. This is expected, as gray and white matter
perfusion in normal subjects is known to differ in a reproducible way.

On the other hand, a serious performance degradation was observed
in PET image generation for cerebrovascular disease patients. Both
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Fig. 11. Radar charts of classification performance measures for SD-CBF, MD-CBF, and synthetic PET CBF at Threshold = Mean – 3 STD: (a) and (b) Evaluation metrics for
detecting abnormal regions (i.e., regions with reduced CBF) in PreDiamox and PostDiamox measurements, respectively.
Fig. 12. MRI-to-PET CBF prediction using either ASL data or structural MRI. Each panel illustrates the data of a separate subject, with real axial and coronal images as well as
synthetic images and magnified absolute error maps.
axial and coronal visualizations reveal the limited performance and
the inability of this approach to produce acceptable CBF maps when
provided with structural MRI as inputs. None of the brain regions with
reduced CBF was properly predicted, showing clearly that ASL scans
are crucial for PET image synthesis in patients with cerebrovascular
disease. Additionally, quantitative analysis demonstrates limited PET
synthesis performance, with an average SSIM and PSNR of 0.78 ± 0.08
and 20.1 ± 3.6, respectively. Fig. 14 also demonstrates the large degree
of variability in synthesized PET CBF values for both the control and
patient groups due to the lack of perfusion data.

Given the established importance of both structural MRI and ASL
perfusion MRI contrasts, including SD-ASL and MD-ASL, for accurate
14
PET CBF synthesis, we aim to investigate whether omitting either
SD-ASL or MD-ASL from the acquisition process has a discernible
impact on PET CBF synthesis performance. The rationale behind this
investigation is to potentially reduce acquisition time and associated
costs while maintaining the integrity of PET CBF synthesis. As shown
in Appendix D, Fig. D.1, omitting either MD-ASL or SD-ASL from
the PET CBF synthesis process significantly degrades the quality of
the CBF maps compared to using both contrasts in conjunction with
structural MRI data. These findings demonstrate that both ASL contrasts
provide complementary information and are essential for generating
high-quality CBF maps.
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Fig. 13. Bland-Altman plots of the mean CBF in True PET and Synthetic PET for
healthy controls and cerebrovascular disease patients at PreDiamox (top panel) and
PostDiamox (bottom panel) measurements when ASL data is used as an input to our
network.

6. Discussion

This study proposed and evaluated a 3D attention-based encoder–
decoder network for brain MRI-to-PET translation. The network archi-
tecture effectively integrates structural MRI and ASL scans to capture
both anatomical and perfusion features, thus improving the quality of
synthesized PET scans. A custom loss function was developed to opti-
mize the PET synthesis performance in both normal and abnormal brain
regions. This loss function is a combination of multiple components that
work cooperatively on driving the network toward the most represen-
tative distribution of actual PET images. A reconstruction loss based on
the mean absolute error was used to ensure high voxel-wise similarity
between real and synthetic PET images. A perceptual loss based on
SSIM was also used to supplement the global loss and maximize the
contextual and visual similarity between real and synthetic PET images.
Attention mechanisms were also incorporated to capture long-range
feature interactions and help the encoder–decoder network learn the
underlying multimodal data distribution. Results demonstrate that 3D
convolutional encoder–decoder networks with attention mechanisms
and a well-designed loss function can accurately synthesize PET CBF
maps from multi-contrast MRI images without the use of radioactive
tracers.

The potential of a network that can take a widely available modal-
ity, such as MRI, and predict results that are only available at special-
ized centers, such as 15O-water PET, is immense. This could enable
gold-standard CBF measurements in sites without access to short half-
life PET agents, thus opening up whole new avenues of research.
Furthermore, it would democratize PET by allowing imaging in eco-
nomically challenged areas that lack the expensive infrastructure re-
quired to support a PET scanner. This would enable more accurate
studies of CBF in a wider range of patients and disease classes, rather
15
Fig. 14. Bland-Altman plots of the mean CBF in True PET and Synthetic PET for
healthy controls and cerebrovascular disease patients at PreDiamox (top panel) and
PostDiamox (bottom panel) measurements when structural MR data is used as an input
to our network.

than simply limiting them to those from urban areas with chronic
conditions.

Several ablation studies were conducted to illustrate the impact
of different loss functions, network elements, and input MRI con-
trasts on the quality of generated PET images. Experimental results
revealed that both anatomical and functional information from struc-
tural and perfusion MRI exams are essential for synthesizing realistic
and high-quality PET scans, particularly for patients with cerebrovas-
cular diseases. Single-delay and multi-delay ASL scans had the most
significant effect on the accuracy of PET synthesis. Further, pairwise
comparison methods such as Bland-Altman analyses and density scatter
plots demonstrated a high level of agreement and correlation between
regional CBF values in actual and synthetic PET images. In compar-
ison to ASL-derived CBF measurements, the synthetic PET CBF maps
exhibited comparable bias, significantly better precision, and a notably
higher positive correlation with true 15O-water PET CBF measurements.

The proposed work has several potential clinical applications. We
report results on a task of clinical importance, namely discriminating
between vascular territories with and without CBF abnormalities. To do
this, mean CBF values were computed for 10 brain regions in healthy
control participants before and after administration of acetazolamide, a
short-acting vasodilator. Subsequently, different threshold CBF values
based on mean CBF and its variability in healthy controls were used
to identify abnormal regions with low CBF in cerebrovascular disease
patients. The improved performance of the network over MRI-only
imaging indicates that the network is effective not only at character-
izing the overall pattern of CBF, but also accurately the severity and
location of abnormal regions, which may only occupy a small fraction
of the overall image volume. This information is not always captured
in summary statistics often used for quantitative assessment, such as
PSNR, NRMSE, and SSIM.
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Data curation was one of the major limitations in this study. The
co-registration of input multi-contrast brain MRI images and quantifi-
cation of 15O-water PET CBF maps are laborious and time-consuming
procedures. Subjective evaluations are also needed to ensure acceptable
image and associated information quality. To address this, future work
will investigate the deployment of automated deep learning algorithms
that can process neuroimages in the native space. Also, the generaliz-
ability of the model will be examined using multi-center data acquired
from different populations at different sites and scanners, as well as
with different underlying diseases.

7. Conclusion

PET imaging of CBF is a critical component in the diagnosis and
assessment of cerebrovascular diseases. However, its use is limited
because of its prohibitive cost and the use of ionizing radiation. This
study introduces an attention-based convolutional encoder–decoder
network for synthesizing 15O-water PET CBF maps from multi-contrast
MRI scans without using radioactive tracers. The performance of the
proposed image-to-image translation network is examined for different
network settings and input MRI sequence combinations. Quantitative
evaluations show improved PET synthesis results compared to previous
MRI-to-PET CBF prediction models. Additionally, qualitative results
also reveal that regional CBF values in synthetic PET are in strong
agreement with those of the ground-truth PET, with no statistically
significant difference between them. In patients with cerebrovascular
diseases, brain regions with abnormally low CBF were accurately iden-
tified in synthetic PET CBF maps. This technique has the potential to
increase the accessibility of cerebrovascular disease assessment for un-
derserved populations, underprivileged communities, and developing
nations, without the need for expensive and radiation-emitting PET
imaging.
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Fig. B.1. Brain arterial vascular territories of ASPECTS.
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Appendix A. MRI parameters

The list of parameters used for the structural MRI and ASL imaging
are reported in Table A.1. MRA stands for the magnetic resonance
angiography, AIF is the arterial input function, and GRE is the gradient
echo sequence. SD-ASL and MD-ASL correspond to the single-delay and
multi-delay ASL, respectively.

Appendix B. ASPECTS vascular territories

Fig. B.1 shows the 10 regions of interest (ROIs) of the ASPECTS
mask. Each hemisphere has 5 ROIs: one anterior cerebral artery (ACA),
three middle cerebral artery (MCA) and one posterior cerebral artery
(PCA).

Appendix C. Bland-Altman analysis of the mean CBF in the AS-
PECTS regions for healthy control and cerebrovascular disease
patients

In this appendix, the Bland-Altman plots of the mean cerebral blood
flow in the ASPECTS vascular territories are presented for both healthy
control and cerebrovascular disease patients. The plots in Fig. C.1
compare the agreement between the true PET CBF and each of (1) the
synthetic PET CBF produced by our encoder–decoder network, (2) the
CBF derived from single-delay ASL (named SD-CBF), and (3) the CBF
derived from multi-delay ASL (named MD-CBF).

Appendix D. PET CBF synthesis performance in the absence of
MD-ASL and SD-ASL techniques

Fig. D.1 demonstrates the PET synthesis performance under three
conditions: without SD-ASL, without MD-ASL, and with both SD-ASL
and MD-ASL. The findings reveal a complementary relationship be-
tween the two ASL contrasts, emphasizing their collective necessity
alongside structural MRI data for the generation of high-quality CBF
maps. This investigation provides valuable insights for refining imaging
protocols and resource utilization in neuroimaging studies.
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Table A.1
List of parameters used for MRI acquisition.

Parameter MRA - AIF GRE Parameter SD-ASL MD-ASL

TR/TE 22/2.4 ms 667/15 ms Labeling pulse shape Hanning Hanning
No. of slices 120 30 Labeling pulse duration 0.5 ms 0.5 ms
Flip angle 15◦ 20◦ Labeling pulse spacing 1.22 ms 1.22 ms
Slice thickness 1.2 mm 5 mm RF pulse strength 0.014 Gauss 0.018 Gauss
Matrix 512 × 512 256 × 256 Mean gradient strength 0.7 mT/m 0.7 mT/m
FOV 220 × 220 mm2 24 × 24 mm2 Maximal gradient strength 7 mT/m 4.5 mT/m
Voxel size 0.43 × 0.43 mm2 – Bolus duration 1450 ms 2000 ms
Scan duration 4:03 min 1:56 min TR/TE 4854/10.7 ms 6691/10.7 ms

Parameter T1w T2-FLAIR PLD 2025 ms 700, 1325, 1950, 2575, 3200 ms

TR/TE 9600/3800 ms 9500/140 ms No. of slices 36 36
No. of slices – 30 FOV 24 cm3 24 cm3

Matrix 256 × 256 512 × 512 Acquisition voxelsize 3.73 × 3.73 × 4 mm3 5.77 × 5.77 × 4 mm3

FOV 180 × 180 mm2 – Reconstruction voxelsize 1.875 × 1.875 × 4 mm3 1.875 × 1.875 × 4 mm3

Resolution 1 × 1 × 1 mm3 0.47 × 0.47 × 5 mm3 Readout planing Axial Axial
Scan duration 3:22 min 3:33 min Scan duration 4:13 min 4:39 min
Fig. C.1. Bland-Altman plots of the mean CBF in the ASPECTS vascular territories for healthy controls (HC, top panel) and cerebrovascular disease patients (PT, bottom panel).
Each panel includes three plots showing the agreement between the True PET CBF and (i) the Synthetic PET (left), (ii) SD-CBF (middle), and (iii) MD-CBF (right).
Fig. D.1. Comparison of PET CBF synthesis performance: Impact of MD-ASL and
SD-ASL contrasts.
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