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ABSTRACT
Arterial Spin Labelling (ASL) MRI is now an established non-invasive method to quantify cerebral blood flow and is 
increasingly being used in a variety of neuroimaging applications. With standard ASL acquisition protocols widely 
available, there is a growing interest in advanced options that offer added quantitative precision and information about 
haemodynamics beyond perfusion. In this article, we introduce the BASIL toolbox, a research tool for the analysis of 
ASL data included within the FMRIB Software Library (FSL), and explain its operation in a variety of typical use cases. 
BASIL is not offered as a clinical tool, and nor is this work intended to guide the clinical application of ASL. Built 
around a Bayesian model-based inference algorithm, the toolbox is designed to quantify perfusion and other haemo-
dynamic measures, such as arterial transit times, from a variety of possible ASL input data, particularly exploiting the 
information available in more advanced multi-delay acquisitions. At its simplest, the BASIL toolbox offers a graphical 
user interface that provides the analysis options needed by most users; through command line tools, it offers more 
bespoke options for users needing customised analyses. As part of FSL, the toolbox exploits a range of complemen-
tary neuroimaging analysis tools so that ASL data can be easily integrated into neuroimaging studies and used along-
side other modalities.
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1A pubmed search with “Arterial Spin Labeling MRI” returns over 300 publica-
tions per year since 2015.

1.  INTRODUCTION

Arterial Spin Labelling MRI is now an established and 
increasingly widely used method for non-invasively 
imaging cerebral perfusion1. BASIL is a toolbox for the 
quantification of perfusion and other haemodynamic 
parameters from Arterial Spin Labelling (ASL) MRI data. 

Its speciality is robust precision quantification using 
Bayesian inference methods, and it is equally well-suited 
to both standard single-delay acquisitions as recom-
mended by the consensus paper (Alsop et al., 2015), and 
advanced multi-delay acquisitions that better sample 
the kinetics of the ASL tracer (Woods et al., 2023). Criti-
cally, BASIL approaches the analysis of all ASL data 
using the same model and algorithm, allowing for con-
sistency and correspondence to be achieved between 
studies irrespective of the acquisition scheme employed. 
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Since the analysis can be applied to every common form 
of ASL, it is possible to process data acquired from any 
MRI vendor’s platform, and to this end BASIL has been 
used with all the major product sequences and many 
widely used research sequences.

An example of BASIL’s output operating on single- 
and multi-delay pseudo-continuous ASL data is shown in 
Figure 1, showing both perfusion and (for the multi-delay 
case) arterial transit time (ATT) estimates. Also shown is 
the estimated uncertainty on the perfusion values, given 
as a standard deviation.

The BASIL toolbox is distributed as part of the FMRIB 
Software library (FSL, www​.fmrib​.ox​.ac​.uk​/fsl) (Jenkinson 
et  al., 2011; Woolrich et  al., 2009), a version having first 
been offered in FSL v5.0.1 in 2012; this paper refers to the 
latest version in FSL v6 (6.0.62). The toolbox is provided 
under the same licence terms as FSL itself (free for aca-
demic use, https://fsl​.fmrib​.ox​.ac​.uk​/fsl​/fslwiki​/Licence) and 

the code is open source (available at https://github​.com​
/physimals). A review of the literature in 2023 indicates that 
it has been used in over 100 published studies3. Compo-
nents of BASIL are also available as plug-ins for other neu-
roimaging and physiological imaging software tools, 
including ExploreASL (Mutsaerts et  al., 2020) (an SPM-
compatible ASL analysis tool, www​.exploreasl​.org) and 
Quantiphyse (a python-based graphical user interface for 
the analysis of physiological imaging data designed for non-
expert users; www​.quantiphyse​.org). The Open Science Ini-
tiative for Perfusion Imaging has created an ASL Pipeline 

Fig. 1.  Example quantified perfusion images from single-delay (top row) and multi-delay (bottom row) ASL in a single 
subject. Also shown is the estimated uncertainty in the perfusion parameter, given as the estimated standard deviation 
on the perfusion value in the voxel, and the corresponding ATT estimates for the multi-delay data. The single-delay data 
have been fitted in “white paper” mode, following the assumptions of the ASL consensus paper. Due in particular to the 
assumption that ATT = 0 s, the resultant perfusion estimates are higher than in the multi-delay case. In the multi-delay 
case, fitting an extra parameter (ATT) increases the uncertainty in perfusion estimates for some voxels, leading to a more 
variable standard deviation map for this parameter.

2It is possible to update BASIL within a prior release of FSL v6 to the specific 
version described here without updating the whole FSL package.
3Literature search carried out in May 2023 based on citations for Chappell 
et al. (2009), limiting only to papers including the term Arterial Spin Labelling, 
excluding self-citations and publications that report new ASL techniques or 
methods comparisons.
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Inventory which compares the features and requirements of 
currently available ASL tools, including the BASIL toolbox4.

The BASIL toolbox includes a graphical user interface 
(GUI, asl_gui) that presents the main functionality that 
many users would require to analyse individual subject 
ASL data, as well as integration with other FSL tools to 
prepare data for group analysis. The toolbox is supported 
by online documentation and hands-on tutorial guides  
at https://asl​-docs​.readthedocs​.io​/en​/latest/. The GUI, 
shown in Figure 2, directly interacts with the oxford_asl 
command line tool, the main command line interface to 
the toolbox. This link between GUI and command line 
allows analysis to be set up first in the GUI, but the asso-
ciated command line call reused and adapted to create a 
batch script for processing large datasets. The design of 
the GUI follows the principle that 20% of capabilities will 
be sufficient for 80% of users; more advanced control is 

offered either via the oxford_asl command line tool or 
through the use of individual component tools for com-
plete control over all analysis steps (as detailed in sec-
tion 4). Notably, the basil command line tool itself is the 
interface to the kinetic model inference algorithm, which 
includes a range of kinetic models.

The aim of this paper is to describe the technology 
and functionality of the BASIL toolbox, documenting 
important details of the implementation in order to pro-
vide a high degree of transparency for its use. This work 
assumes background knowledge of ASL and those who 
are new to the modality are referred to resources such as 
Chappell et al. (2017) or https://asl​-docs​.readthedocs​.io​
/en​/latest/ for an introduction to both acquisition and 
analysis. Neither does this work attempt to guide users 
on how to choose between the various analysis strate-
gies that are possible using the toolbox, particularly in the 
context of clinical applications. Such discussion can be 
found elsewhere (including but not limited to Alsop et al., 
2015; Chappell et  al., 2017; Jezzard et al., 2017; Pinto 
et al., 2020; Zhao et al., 2017).

Fig. 2.  BASIL toolbox GUI (asl_gui) showing “Input data” tab loaded with single-delay PCASL after a preview of the 
label-control subtraction has been requested.

4https://docs​.google​.com​/document​/d​/e​/2PACX​-1vQ​-1GF2fmz6Q4IukuKP​_​
-57H​-xi872Xq​_uBlX5P0Cwpj4RYd​_t73pvZ64UqXegPaVpQJhQQrVRJRPro​
/pub
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2.  OVERVIEW OF ASL ANALYSIS

Generating a perfusion-weighted image from ASL data is 
trivial, involving the subtraction of label and control 
images. Typically, multiple images will have been acquired 
to improve signal-to-noise ratio and an average is gener-
ally taken over all subtraction pairs. Two further steps are 
then required for quantification: 1) kinetic model fitting, to 
account for the relationship between signal intensity  
and delivery of labelled blood water via perfusion; 2)  
calibration, to relate signal intensity to absolute perfu-
sion, scaling for the apparent concentration of the tracer 
via the equilibrium magnetisation of arterial water.

The ASL consensus paper (Alsop et al., 2015) com-
bines these steps into a single process, given in terms 
of an equation that converts from raw image intensities 
to absolute perfusion using a proton density-weighted 
M0 image. For more advanced quantification, kinetic 
model fitting is achieved fitting a non-linear kinetic 
model (Buxton et al., 1998) to the data, which allows for 
correction of confounding haemodynamic effects and/
or estimation of other haemodynamic information, such 
as arterial transit time (ATT), and arterial blood volume 
(aBV) in larger arteries (the “macrovasculature”) 
(Chappell et  al., 2010; Petersen et  al., 2006). Various 
strategies for calibration can be employed, reflecting 
both the type of M0 images available, and whether a 
reference region is used to estimate the magnetisation 
of arterial blood or if this is done on a voxelwise basis 
(Pinto et al., 2020).

As with other functional imaging modalities, correction 
for motion and distortion is possible for ASL perfusion 
images. Additionally, registration to a template space, for 
example, MNI152 “standard” space (Grabner et  al., 
2006), is often desirable as part of a study. All of these 
processes follow techniques used in other neuroimaging 
modalities, the closest being BOLD fMRI, but with partic-
ular challenges associated with the characteristics of 
ASL data.

3.  THE BASIL ASL ANALYSIS PIPELINE

The BASIL toolbox offers a complete analysis pipeline for 
ASL data that aims to cover the majority of use cases and 
will be discussed in the following section. The pipeline is 
accessed via either the toolbox GUI asl_gui or the com-
mand line tool oxford_asl, and in either case the under-
lying processing is the same (namely, using the individual 
components of the toolbox listed in section 4). Figure 3 
shows a schematic diagram of the operations performed 
to process ASL data to obtain perfusion and ATT maps. If 

required, a user may perform the operations in a different 
order or with different settings by using the individual 
components of the toolbox listed in section 4. Consistent 
with the wider FSL toolbox, BASIL has been developed 
for research use and it has not been validated for clinical 
applications.

3.1.  ASL data input

The tools in the BASIL toolbox all accept data in NIFTI 
format (consistent with the wider FSL tools). Users are 
recommended to convert data from DICOM to NIFTI 
using the widely-used dcm2niix tool5 which has compat-
ibility with a range of ASL implementations. In the future, 
the emergence of tools that meet the recently adopted 
ASL-BIDS standard will facilitate easier conversion of 
DICOM to NIFTI data whilst preserving acquisition 
parameters from the DICOM header (Clement et  al., 
2022), though currently BASIL does not interface with 
ASL-BIDS. Since ASL can produce quantitative maps, it 
is important that conversion is done respecting scale-
slopes stored in the DICOM header.

ASL data are processed in the native acquisition voxel 
grid, after having applied optional distortion and motion 
corrections (which do not alter the voxel grid, but rather 
transform data within the same grid). This choice is made 
on the basis that ASL is typically of low SNR and low 
spatial resolution, which implies high partial volume 
effects (discussed in section 3.5). Resampling the data 
onto a different voxel grid introduces interpolation arte-
facts that degrade data quality and negatively impact 
perfusion estimation (Kirk, 2021). Analysing the data in 
the native voxel grid as opposed to an anatomical or 
standard space is desirable because it minimises the 
amount of resampling or interpolation that is applied to 
the data; this is a point of difference with some other 
pipelines that do transform data6.

3.2.  Kinetic model fitting

The distinctive feature of the BASIL toolbox is estimation 
of perfusion and other haemodynamic parameters 
through the approach taken to fitting of the kinetic model 
to estimate physiological parameters. For all types of 
ASL label-control data, the toolbox uses a fast Variational 
Bayesian inference algorithm to perform iterative non-

5https://www​.nitrc​.org​/plugins​/mwiki​/index​.php​/dcm2nii
6If alignment to anatomical or standard space is required, the pipeline trans-
forms the perfusion estimates rather than the ASL data.
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linear kinetic model fitting, typically in a matter of minutes 
(Chappell et  al., 2009). The use of Bayesian inference 
allows for the incorporation of prior information into the 
analysis, which assists robust parameter estimation in 
the presence of noise, particularly when several parame-

ters are being estimated. Within the Bayesian framework, 
each parameter is treated as a component of a multi-
variate normal distribution, for which the mean represents 
the most likely estimate and the variance gives a measure 
of uncertainty. Covariances between parameters retain 

Fig. 3.  A graphical representation of the processing steps required to produce a perfusion image (scaled into absolute 
units) along with ATT. The numbers 3.1, 3.2 etc. refer to section headings in the manuscript text. Optional steps such as 
motion/distortion correction and partial volume correction have been included. * denotes an output for which multi-delay 
data are required.
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their usual meaning, and all distribution parameters  
are estimated voxelwise from the complete data (all of 
the individual label-control pairs are exploited). The use 
of variance to represent parameter uncertainty is akin to 
a confidence interval (and allows the computation of  
confidence intervals if required); but it is not the same as 
the variance within a population (which cannot be inferred 
from a single subject’s data). Figure  1 shows example 
parameter maps from BASIL, where the variance has 
been converted to the standard deviation.

Each parameter is associated with a prior distribu-
tion, which can be distributional or spatial. A distribu-
tional prior is specified in terms of a normal distribution 
with mean and variance, which regularises parameter 
estimation and reflects the information known about the 
parameter before any data are seen (derived, e.g., from 
population studies). Bayesian inference can be viewed 
as an updating process, whereby the prior distribution is 
refined given the information available from the data. 
The default priors used by the toolbox are documented 
in the Supplementary Material. The prior distributions 
can be thought of as soft constraints, as opposed to the 
hard limits often implemented in non-probabilistic fitting 
algorithms. Values for the prior means have been derived 
from existing literature where possible (e.g., T1 values 
which assume a 3 T field strength) or are fairly typical 
given normal applications of ASL (e.g., ATT values 
based on typical labelling plane location). Prior standard 
deviations have been chosen to not unduly constrain 
the inference process by comfortably covering a range 
of plausible expected values.

The parameters of the distributional priors can be 
adjusted by the user via the command line interface for 
advanced analyses, for example, where a patient popula-
tion is known to have different T1 values from the general 
population. In particular, the model fitting can optionally 
incorporate a map of subject-specific tissue T1 values in 
the same voxel grid as the ASL data, where these data 
have been collected. In this scenario, the default prior 
variance on T1 is retained to reflect measurement error in 
these values.

The alternative type of prior available within BASIL is 
a spatial prior, used to enable spatial regularisation 
which is recommended to improve the quality perfusion 
estimation (Groves et al., 2009; Penny et al., 2004). In 
contrast to the common usage of the term “spatial 
prior” in neuroimaging, this does not encode any par-
ticular belief about the value of a parameter at different 
locations within the brain. Instead, the spatial prior 
encodes the belief that parameter values should not 

vary greatly between neighbouring voxels on the same 
slice (the prior operates in the xy plane but not along 
the z axis to account for the large slice thickness typi-
cally used in ASL acquisitions). This provides a form of 
adaptive spatial regularisation on the estimated perfu-
sion image, whereby the regularisation is driven by the 
confidence of parameter estimates in neighbouring 
voxels. Thus, where the data are of higher quality and 
there is higher confidence in the voxelwise estimates, 
there is less influence of neighbouring voxels and less 
apparent smoothing. This is preferable to conventional 
spatial smoothing of the ASL data as a preprocessing 
step before model fitting, since that involves the selec-
tion of an arbitrary smoothing parameter (e.g., full-
width half maximum, FWHM) and can, for multi-delay 
data, lead to errors due to mixing of voxels with differ-
ent (non-linear) kinetics (Groves et al., 2009). By con-
trast, no user-selected smoothing parameter is required 
to use spatial regularisation in BASIL. An important 
consideration for application of the spatial prior is that 
it operates on the voxel grid on which the ASL data are 
represented, but this may not be the voxel grid on 
which the data were acquired (e.g., some 3D GRASE 
sequences are interpolated after acquisition). In either 
case, the underlying assumption of the spatial prior 
remains valid (a local smoothness constraint), though 
the extent of regularisation may vary. The operation of 
the spatial prior is illustrated in Figure 4.

The use of Bayesian inference allows the same algo-
rithm to be used for all data, that is, single- and multi-
delay. Where a given parameter cannot be estimated 
from the data, the priors in BASIL provide a default value 
for these parameters, along with a reflection of the uncer-
tainty that accrues due to them not being estimable. For 
example, since it is not possible to estimate ATT voxel-
wise from single-delay data, a BASIL analysis will take 
the prior mean as the value of this parameter and the 
prior variance over ATT will be reflected in the estimated 
confidence in the final perfusion estimate, meaning that it 
reflects the variability introduced by accounting for the 
lack of knowledge of ATT.

Inference proceeds in multiple stages to achieve good 
convergence to a global solution and thus a robust esti-
mation of the parameters, following good practice in 
non-linear model fitting. In the first stage, only perfusion 
and ATT are inferred. Subsequent stages widen the 
range of parameters that are estimated, using the values 
from the previous stage for initialisation (in all cases, the 
priors remain the same). Only at the final stage are  
spatial priors applied to perfusion to implement spatial  
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regularisation, using the full set of estimated parameters 
from an analysis without spatial priors as initialization. 
Table 1 documents the complete sequence of steps that 
are possible; the actual steps performed depend upon 
the analysis options chosen.

As part of the inference process, the influence of 
noise on the data is explicitly estimated in terms of the 

magnitude of the assumed white noise on the data in 
each voxel (defined as the precision of the Gaussian 
likelihood distribution on the measured data values)7. 

Fig. 4.  Perfusion maps derived from single-delay pseudo-continuous ASL with (left) and without (centre) spatial 
regularisation. The difference image is shown on the right. Quantities are in arbitrary units (i.e., non-calibrated data).

Table 1.  Multi-step analysis process for kinetic model inference in BASIL.

Step

Parameters inferred

Tissue (grey matter**) Macrovasculature
Labelled bolus (arterial 

input function) White matter

1 Tissue Perfusion, ATT
2 Macrovascular  
correction

Perfusion, ATT aCBV, BAT

3 Label duration  
correction*

Perfusion, ATT aCBV, BAT LD

4 Advanced kinetics 
(correction for  
dispersion and label 
exchange)

Perfusion, ATT,  
exchange parameter(s)

aCBV, BAT LD, dispersion  
parameter(s)

5 Correction for  
variable T1

Perfusion, ATT, exchange 
parameter(s), T1t

aCBV, BAT LD, dispersion  
parameter(s), T1b

6a Spatial  
regularisation

Spatial prior applied to perfusion parameter

6b Partial volume  
effect correction with 
spatial regularisation

Perfusion**, ATT, exchange 
parameter(s), T1gm

aCBV, BAT LD, dispersion  
parameter(s), T1b

Perfusion, ATT,  
exchange  
parameter(s), T1wm

Spatial prior applied to GM and WM perfusion parameter

Inference proceeds with only a subset of parameters being inferred at each step, with more parameters being progressively added. 
The table shows a complete analysis with all possible parameters (or parameter groups); analyses that do not require inference of all 
parameters can be processed in fewer steps, missing out those not required. Parameter values inferred in one step are used to initialise 
these same parameters in the subsequent step, the priors remain the same for all steps (excepting the introduction of the spatial prior 
in the final step if requested). ATT = Arterial Transit Time, BAT = Bolus Arrival Time, LD = Label Duration, aCBV = arterial Cerebral Blood 
Volume, T1x = T1 of x, where x is one of t = tissue, b = (arterial) blood, gm = grey matter, wm = white matter.
*This is primarily included for use with pulsed ASL when no further control has been made for the label duration.
**Tissue parameters from previous steps are taken to initialise the GM parameters for PVEc step. Initial values for GM and WM perfusion 
are set based on a ratio of 2.5:1 and scaled by the respective GM and WM PV estimates.

7Formally, the noise precision parameter has as its posterior distribution a 
gamma distribution with two parameters and is subject to a gamma distribu-
tion prior.
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The noise parameter influences the degree to which 
prior information is used to inform the parameter esti-
mates, as well as contributing to the resulting confi-
dence in the parameter estimates. By default, the prior 
on the noise parameter is set to be uninformative, with 
the noise parameter being determined from the data. 
For datasets with fewer than five volumes (or if the user 
requests it), a more informative prior is employed that 
assumes an approximate SNR of 10, although ultimately 
the noise parameter is still estimated from the data 
where possible. This is further discussed in the first sec-
tion of the Supplementary Material.

3.3.  Kinetic models

The kinetic model implemented in the BASIL toolbox 
follows the general kinetic model as described in detail 
by Buxton et  al. (1998). Pulsed (PASL), pseudo-
continuous (PCASL), and Hadamard time-encoded 
labelling schemes are supported (the latter requires a 
prior decoding step that can be performed by asl_file). 
The modular nature of the codebase means that new 
variants of ASL can be incorporated without re-writing 
other parts of the toolbox; for example, this means 
velocity-selective ASL (Qin et  al., 2022) may be sup-
ported in a future release.

By default, a “box-car” function is assumed for the arte-
rial input function (AIF) with T1 decay at blood T1-rate, and 
a well-mixed single compartment with venous outflow 
assumed for the residue function with a distinct tissue T1. 
A range of alternative AIF (Chappell, Woolrich, Kazan, 
et al., 2013; Hrabe & Lewis, 2004) and residue functions 
(Lawrence et  al., 2000; Parkes, 2005) are also available 
(see in the Supplementary Material), allowing modelling of 
effects, including dispersion and water exchange between 
capillary blood and extravascular space.

The default approach (i.e., when using the GUI or 
oxford_asl) is to perform kinetic model fitting inde-
pendently of the calibration so that the calibration can 
be revisited later without needing to repeat the fit. For 
some combinations, the convolution of AIF and residue 
function is implemented analytically (using the formula-
tion in Hrabe & Lewis (2004) for the default case), other-
wise numerical convolution (trapezium rule with a 
resolution of 0.1  s) is used, which increases the pro-
cessing time. The toolbox GUI includes the option to 
check whether the analysis to be performed matches (is 
“compliant with”) that specified in the consensus paper 
(Alsop et al., 2015). Under these conditions, the model-
ling assumptions match those used to arrive at the 

quantification formula in Alsop et  al. (2015)8, although 
the formula is not used directly.

3.4.  Macrovascular contamination

Macrovascular contamination arises due to the pres-
ence of labelled blood-water within major arteries at the 
time of imaging that is destined for brain tissue outside 
the voxel, and which causes an artificial increase in esti-
mated perfusion within that voxel. This can be indicative 
of arterial transit artefacts, examples of which are given 
in Jaganmohan et al. (2021). Contamination from major 
arteries can be corrected using an extra component in 
the kinetic model (Chappell et al., 2010). Although con-
tamination can arise with either single- or multi-delay 
labelling schemes, it can only be corrected for with 
multi-delay data. This is because the separation of mac-
rovascular and perfusion signals relies on the different 
kinetics and arrival times of these two signal contribu-
tions that can only be observed when multiple delays 
are sampled. In practice, major macrovascular contam-
ination is present in only a subset of voxels; invoking an 
extra component in the model increases the risk of 
overfitting and increases the uncertainty of perfusion 
estimates in voxels with no contamination. Hence, the 
magnitude of the macrovascular component in the 
model is subject to a shrinkage (or Automatic Relevancy 
Determination) prior (Mackay, 1995) that seeks to ensure 
that this component is only included where the data 
support it. This enhances the robustness of perfusion 
quantification across subjects that may have differing 
extents of macrovascular contamination (particularly if 
cerebrovascular disease is present).

If the data have calibration, the magnitude of the mac-
rovascular component gives a measure of arterial blood 
volume (aBV) (Chappell et al., 2010; Petersen et al., 2006), 
the fraction of the voxel occupied by macro vessels, 
which are typically arterial. This should not be confused 
with the (total) blood volume, as estimated by other per-
fusion modalities that includes all vascular compartments 
in the voxel. The macrovascular component in the kinetic 
model follows the form of the AIF and thus can incorpo-
rate the effects of dispersion. The macrovascular compo-
nent has a separate and independent arrival time 
parameter, the bolus arrival time (BAT), rather than the 
ATT which applies to the kinetics of the tissue.

8Namely, identical tissue and blood T1 values, and no venous outflow compo-
nent.
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3.5.  Partial volume correction

A major feature of BASIL is the inbuilt partial volume 
effect correction (PVEc) method. PVEc seeks to separate 
the perfusion contributions from grey and white matter 
(and account for the zero-perfusion signal contribution 
from CSF) within a single voxel using estimates of the 
partial volumes of grey and white matter. The approach 
taken in BASIL follows the method in Chappell et  al. 
(2011) whereby the signal in a voxel is modelled as a 
combination of grey and white matter kinetic signals 
which are mixed in proportion to the volume of each tis-
sue within the voxel. Since this model is ill-posed, regu-
larisation is imposed in the form of spatial priors on the 
grey and white matter perfusion values separately. This 
has the effect of using immediate neighbouring voxels to 
inform the tissue-specific perfusion estimates in a given 
voxel, following the principles used in other voxelwise 
correction methods (Asllani et  al., 2008; Liang et  al., 
2013). Since this regularisation is a prior-based approach, 
it is adaptively driven by data quality, meaning that 
greater spatial detail can be preserved where the data 
support this (a detailed investigation is given in Zhao 
et  al. (2017)). For example, where multi-delay data are 
used, which provides greater separability between grey 
and white matter kinetics due to differences in ATT and 
T1, the influence of the spatial prior will be automatically 
reduced. Although the method in Chappell et al. (2011) 
was originally demonstrated for multi-delay data, the 
implementation in BASIL generalises to the single-delay 
case (benefitting from specification of a prior on the noise 
parameter where only a few measurements are available).

PVEc requires voxelwise estimates of both GM and 
WM partial volumes. The pipeline can extract these from 
the output of an existing anatomical analysis using the 
FSL comprehensive anatomical analysis tool, fsl_anat; 
or by applying the FSL FAST segmentation tool (Zhang 
et al., 2001) to a supplied structural image; or by using 
user-supplied partial volume estimates directly. Esti-
mates not in the same space as the ASL data (and partic-
ularly where the resolution of the estimates is higher than 
the ASL resolution, as is common for those derived from 
structural images) are transformed into ASL space using 
FSL applywarp with supersampling. In contrast with 
standard interpolation directly to the lower resolution, an 
intermediate supersampling step can be thought of as 
measuring the degree of overlap between corresponding 
voxels at the input and output resolutions, which better 
preserves partial volume data. The effectiveness of PVEc 
depends on the accuracy of partial volume estimates 

and, by extension, the accuracy of registration where this 
is needed to transform the estimates into the ASL data 
space (see Zhao et al., 2017).

When the BASIL pipeline is run with the PVEc option, 
it will do a normal, non-PVEc, analysis first and use this to 
initialise the PVEc analysis (the non-PVEc perfusion 
image is also used to refine registration with the struc-
tural image). In the final output, separate GM and WM 
perfusion images are produced, along with ATT images 
for multi-delay data. The algorithm calculates perfusion 
(and ATT) values for all voxels within the brain mask which 
will include extrapolation of values within voxels with little 
or none of the appropriate tissue. Hence, GM and WM 
masks (thresholded at 10% tissue partial volume) are 
used to produce masked GM and WM perfusion (and 
ATT) maps for visualisation and further analysis. As FAST 
partial volume estimates for subcortical structures can-
not be interpreted in the same way as for cortical GM 
(due to differing tissue properties), these regions are 
removed from the PVEc output using the definitions of 
cortical grey matter and cerebral white matter in the 
Harvard-Oxford atlas. Perfusion estimates for these 
regions are still available in the non-PVEc output, but 
they are excluded from PVEc output because it is difficult 
to interpret them in light of the ambiguity of their partial 
volume estimates. Where this is not desired, the user will 
need to produce and apply their own ROI masks.

3.6.  Calibration

The BASIL pipeline supports two widely used approaches 
to calibration:

•	 voxelwise, where the voxel values in the M0 image 
are used to estimate a magnetisation of arterial blood 
for each corresponding voxel in the perfusion image. 
This is the recommended approach of the ASL con-
sensus paper and is more commonly used in clinical 
contexts (Alsop et al., 2015).

•	 reference region, where the mean intensity within a 
specific region of interest (ROI) of the M0 image is 
used to estimate a single global value for the magne-
tisation of arterial blood (Pinto et al., 2020).

For the voxelwise method, the toolbox follows the rec-
ommendations of the ASL consensus paper and cor-
rects for proton density differences between tissue and 
blood using a relative water density (partition coefficient) 
of 0.9 (Herscovitch & Raichle, 1985), and corrects for a 
short TR when the TR for the M0 image is less than 5 s, 
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assuming for all tissues a T1 of 1.3 s (the reference value 
for GM at 3 T). The calibration image is smoothed with a 
median filter (using a 3x3x3 voxel kernel) to suppress 
noise. To reduce “edge-effects” at the pial boundary, 
which arise due to partial voluming of brain tissue with 
CSF and tissue that are outside of the brain and give 
rise to a high intensity rim in the calibrated perfusion 
image, the pipeline implements a strategy of erosion 
(using a 3x3x3 voxel kernel) and extrapolation on the 
brain-masked M0 image prior to calibration. This pre-
processing and the effect on the resulting perfusion 
image are illustrated in Figure 5. The derivation of the 
registration between the M0 image and ASL is dis-
cussed in the following section.

For the reference region method, the pipeline requires 
an ROI to be specified. By default, the ventricular CSF 
space is used, since this is an easy brain region to iden-
tify that will enclose multiple voxels without partial volum-
ing at typical ASL resolution. Correction is made for 

partial T1 recovery and optionally for T2 mismatch 
between CSF and brain tissue using parameters in the 
Supplementary Material. Alternatively, a WM ROI can be 
specified, and appropriate tissue-specific corrections will 
be performed. A GM ROI can be provided but is not rec-
ommended due to partial volume effects. The pipeline 
includes the functionality to automatically generate the 
reference region ROI for the different tissue types should 
a structural image be available. The preference is to sup-
ply a structural image that has already had structural 
processing performed (including brain extraction and 
segmentation to generate partial volume estimates); to 
this end, the toolbox accepts the output of fsl_anat. 
Alternatively, FSL FAST will be applied directly to the brain 
extracted structural image to generate partial volume 
estimates with three tissue classes. When performing ref-
erence region calibration, it is not necessary to register 
the M0 image to the ASL.

For automated identification of a ventricular CSF ROI, 
the partial volume estimate for the CSF component from 
the FAST segmentation is selected; this is then masked 
with an ROI defined from the left and right ventricles from 
the Harvard-Oxford Atlas. The ventricular ROIs are trans-
formed into the same space as the CSF partial volume 
estimates, thresholded at 0.1, binarised, and then eroded. 
The resulting masked CSF partial volume estimates are 
then transformed into ASL space using the registration 
performed between ASL data and structural image (using 
the downsampling process described in section  3.5). 
Finally, the resulting masked partial volume estimates are 
thresholded at 0.9 to leave only voxels with minimal par-
tial volume effects. This procedure is deliberately conser-
vative and is not meant to produce an accurate mask of 
the whole of the ventricular space, but rather to ensure a 
sample is taken from multiple voxels that are well within 
the ventricles.

For automatic definition of a WM ROI, the partial vol-
ume estimates from the WM component of the segmen-
tation are transformed into the ASL data space (using the 
result of the registration to the structural image) and 
thresholded at 0.9; no further masking is applied.

Correction for coil sensitivity, where not performed 
during acquisition, can optionally be applied as part of 
the reference region calibration operation (it is implicit in 
the voxelwise method). This is achieved by either supply-
ing a sensitivity image or indicating that the bias field of 
the structural analysis (fsl_anat) should be used, if 
available. Alternatively, two M0 images can be supplied, 
one of which is a reference with no (or minimal) sensitivity 
variation, typically acquired using the body coil.

Fig. 5.  Calibration using a voxelwise approach. Left: 
Calibration using the original calibration image (lower 
image) results in spurious high perfusion voxels around 
the pial boundary of the brain. Right: Pre-processing of 
the calibration image (lower image) reduces the presence 
of CSF in pial voxels of this image, which suppresses 
artefacts in the resulting perfusion image.
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3.7.  Motion and distortion correction

Motion parameter estimation can optionally be per-
formed using FSL MCFLIRT (Jenkinson et al., 2002) on 
the ASL timeseries with the M0 image as reference (if 
this is not possible, the middle volume in the series is 
used). The rationale for using the M0 image is to increase 
the robustness of the estimation to variation in images 
from ASL data in which the contrast varies, for example, 
due to variations in the static tissue signal present at dif-
ferent delays. To minimise interpolation artefacts when 
the estimated transformations are applied to the data (in 
case there is an overall motion related misalignment with 
the M0 image), the estimated transformations for each 
volume in the series are re-referenced to the middle vol-
ume in the series using the transformation between the 
middle volume and the calibration (which serves as the 
registration between ASL data and the M0 image, if 
required for voxelwise calibration). There exists some 
debate as to whether motion correction is advantageous 
for ASL imaging (Alsop et al., 2015) and it is left to the 
user to decide if it should be performed. One consider-
ation is that high-motion volumes can be regarded as 
outliers in a model-fitting sense, and such outliers may 
introduce bias if they violate the underlying assumption 
of Gaussian noise. This is somewhat similar to 
approaches that apply variable weighting to the data: 
the algorithm will still tend towards the solution implied 
by the non-outlier data, but with greater uncertainty than 
would otherwise be the case. If motion correction is not 
requested, a registration between the calibration image 
and first volume of the ASL series is obtained using FSL 
FLIRT (and later updated once a perfusion image is 
available; see section 3.8).

The pipeline implements correction for distortion due 
to B0 field inhomogeneity when supplied either with a 
fieldmap, or an additional M0 image with reversed phase 
encoding compared to the main M0 image. When a field-
map is supplied, FSL epi_reg is used to estimate the cor-
rection warp field which can then be combined with a user 
supplied gradient distortion warp field and applied to the 
ASL data series along with the estimated motion correc-
tion transformations. In this correction, the Jacobian of 
the warp is extracted and used to correct intensity scaling 
to account for the effects of distortion on signal intensity, 
though the correction is imperfect and SNR will remain 
lower in affected regions. When using phase-encoded 
reversed M0 images, FSL topup (Andersson et al., 2003) 
is used to estimate and apply distortion correction to data 
that have already had motion correction applied.

3.8.  Registration

The registration functionality of the pipeline is built on 
FSL tools, specifically FLIRT (Jenkinson et  al., 2002; 
Jenkinson & Smith, 2001) and epi_reg. The main objec-
tive of registration in the toolbox is to align the perfusion 
image (and other images in ASL acquisition space, such 
as ATT) with the structural image. The estimated transfor-
mation can be combined with others, such as the (non-
linear) transformation between structural and MNI152 
standard images provided by fsl_anat.

An approximate registration is performed both as an 
initialisation for the main registration and also for use in 
ASL data pre-processing prior to kinetic model fitting. For 
example, the creation of a brain mask from the anatomi-
cal image to define the extent of the analysis region in the 
kinetic model inference. This uses a 6 degree-of-freedom 
rigid FLIRT registration with either the brain extracted M0 
image or mean of the label-control subtracted ASL 
timeseries as the base image.

The main registration process in the pipeline (performed 
by asl_reg) uses boundary-based registration (BBR) 
(Greve & Fischl, 2009) and thus needs to be provided with 
a white matter segmentation (normally obtained from the 
fsl_anat output). When a fieldmap is available, this can 
be included in the registration process (internally using the 
epi_reg command). By default, the pipeline uses the 
uncalibrated perfusion-weighted image, that is, after 
kinetic model fitting and before calibration, as the source 
image for this because it provides better contrast between 
grey and white matter than the control or M0 images, 
which is beneficial for BBR. The user can specify alterna-
tive registration sources: the mean difference image, the 
calibration image (if it is pre-registered with the ASL), or 
some other arbitrary reference. If major disturbances are 
expected, the user is recommended to perform their own 
registration and pass this directly to override all pipeline 
registration.

3.9.  ROI reporting

When a structural image is provided, the pipeline will 
automatically report on the mean whole-brain perfusion 
within grey and white matter. For this, ROIs are defined 
from the partial volume estimates transformed to the 
resolution of the perfusion image and using a threshold 
of 90% for WM and 80% for GM. The lower threshold 
for GM is a pragmatic choice reflecting the low number 
of “pure” voxels at a typical ASL resolution, but the user 
can select a different threshold if appropriate for their 
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data. For example, Chappell et  al. (2021) suggest a 
threshold of 70% as a pragmatic choice for typical ASL 
resolution, for example, when following the resolution 
recommendations in Alsop et  al. (2015). When avail-
able, these ROIs are also applied to calculate separate 
mean whole-brain GM and WM perfusion and ATT val-
ues after PVEc. A more restrictive cerebral GM value is 
also calculated by using the cortical GM and cerebral 
WM regions in the Harvard-Oxford atlas to mask out 
subcortical structures from the PVEc output maps.

Optionally, the BASIL pipeline will calculate sum-
mary measures of perfusion (and ATT where available) 
within ROIs defined by the Harvard-Oxford cortical and 
subcortical atlases. The probability maps from the 
atlases are transformed to the resolution of the perfu-
sion images and thresholded at a probability fraction 
greater than 0.5. For any ROI with greater than 10 vox-
els, the following summary statistics are calculated: 
mean, standard deviation, median, and interquartile 
range. Additionally, the precision-weighted mean is cal-
culated using the voxelwise precision (1/variance) esti-
mates on the perfusion values. This measure thus 
accounts for variation in the confidence of perfusion 
estimates within the ROI. Supporting this, the I2 mea-
sure is also calculated, which describes the percentage 
of variation across voxels that is due to heterogeneity 
rather than chance (Higgins et al., 2003). Qualitatively, 
this indicates the variation of perfusion within the ROI 
that is not attributable to the estimated uncertainty in 
the voxelwise values. This is offered as a potentially 
useful metric, but it has not been explored extensively 
and no specific recommendation is made for its use. All 
of these summary measures are provided for the 
regions defined in the Harvard-Oxford atlases irrespec-
tive of the tissue content of the ROI, along with sepa-
rate calculations where only the GM (at least 80% PV) 
or WM (at least 90% PV) are included.

3.10.  Quality control

The BASIL toolbox does not currently provide any form of 
automated quality control (QC) for the main processing 
steps of the analysis pipeline, though this is an area of 
active research. A number of pipeline outputs permit the 
user to perform manual QC. These include summary 
measures of perfusion and ATT as detailed in section 3.9; 
perfusion estimates both before and after calibration; and 
the global M0 value or reference region mask used for 
calibration. The latter two help check for calibration 
issues and permit the user to perform their own calibra-

tion. When the pipeline is run with all structural process-
ing options, pipeline outputs will be provided in native 
acquisition, structural and standard (MNI152) space, 
which enables the user to check registration quality.

4.  SUMMARY OF TOOLS IN THE BASIL TOOLBOX

asl_gui—the GUI for the toolbox. This offers a complete 
analysis solution for common ASL variants appropriate to 
the majority of use cases. This performs, via oxford_asl, 
the processing pipeline detailed in section 3. This article 
has largely focused on the processing steps available in 
the GUI.

oxford_asl—the main command line interface for the 
toolbox, which provides a scripting-based solution suit-
able for the majority of use cases. As with the GUI, it per-
forms the processing pipeline detailed in section  3. In 
contrast to the GUI, oxford_asl also allows for greater 
user control over individual processing steps, and batch-
processing of analyses prepared using the GUI.

The following tools are components of the BASIL tool-
box that are used within oxford_asl and can be directly 
accessed by an advanced user building a bespoke ASL 
processing pipeline.

basil—the command line tool for the kinetic model 
inference, also incorporating PVEc. This allows for a 
variety of custom kinetic modelling to be performed on 
data, separate from other associated steps such as cal-
ibration and registration. This would be appropriate for 
a user who wishes to customise their kinetic analysis 
beyond the options available through oxford_asl, or 
wants to undertake that stage of analysis entirely inde-
pendent of calibration and other processing performed 
using FSL tools.

asl_calib—a command line tool for performing the 
steps involved in calibration, namely the estimation of the 
magnetisation of arterial blood from an M0 image. This 
would be appropriate for a user who needs to perform a 
customised calibration, for example, using saturation 
recovery images, that is not offered by oxford_asl.

asl_reg—a command line tool that performs the 
steps needed for registration of ASL data to an anatomi-
cal image. This is a wrapper for other FSL registration 
tools (FLIRT and epi_reg) specifically tuned for ASL. 
This might be used if the default registration within 
oxford_asl is not successful for a given dataset.

asl_file—a command line helper tool for manipulat-
ing ASL data, this tool understands that ASL data come 
with combinations of label-control pairs and different 
delays within a single 4D image. This might be used to 
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manipulate ASL data, for example, separate label and 
control images, perform subtraction, and undertake 
decoding of time-encoded data.

5.  ASSOCIATED AND RELATED TOOLS

The BASIL toolbox contains a number of additional tools 
not included within the default pipeline implemented by 
oxford_asl, but which might be used where the data or 
application demands it.

asl_deblur—a command line tool that compensates 
for through plane blurring introduced in data with long 
readout out duration (such as single shot spiral or GRASE 
type acquisitions), based on the method used in Chappell 
et al. (2011).

enable—a command line tool for the automatic 
removal of low-quality or artefactual ASL data volumes, 
based on Shirzadi et al. (2017). This can be called from 
within oxford_asl.

fabber—a command line tool that performs non-
linear model inference via the fast variational Bayesian 
inference algorithm from Chappell et al. (2009), including 
spatial priors (Groves et al., 2009; Penny et al., 2004). It is 
used within the BASIL toolbox for kinetic model infer-
ence, where it is called via basil command line tool. 
Within FSL, a variant of fabber is also offered for use 
with dual-echo ASL for functional MRI applications. The 
majority of users will not need to interact with this tool 
directly for ASL applications unless they wish to imple-
ment a different kinetic model or further customise 
parameter prior distributions.

FIX—a command line tool for ICA denoising of fMRI 
data that can be applied to ASL data (Carone et al., 2019).

quasil—a version of the basil command line tool 
tailored for QUASAR ASL that exploits the combination 
of flow-suppressed and non-suppressed data (Chappell, 
Woolrich, Petersen, et al., 2013; Petersen et al., 2006).

toast—a version of the basil command line tool tai-
lored for Turbo-QUASAR data.

6.  FUTURE DIRECTIONS

The BASIL toolbox was originally developed in the context 
of neuroimaging studies that focus on cortical GM perfu-
sion and analysis of volumetric perfusion images. There is 
growing interest in accurate and robust measurements of 
perfusion in other brain regions and in other representa-
tions that are more specifically tied to the underlying anat-
omy. In the future, we intend for BASIL to support 
estimation of perfusion on the cortical surface (Kirk, 2021), 

exploiting information that is not available from a simple 
post-projection of volumetric perfusion onto the cortical 
surface, but instead using methods that account for partial 
volume effects around the cortex and can separate corti-
cal GM perfusion from WM perfusion contributions. Perfu-
sion images from the BASIL toolbox already include WM 
regions with specific WM perfusion estimates being pro-
duced via PVEc and mean WM perfusion being reported. 
In the future, the toolbox will additionally report on the per-
fusion within subcortical structures directly, incorporating 
knowledge of partial volume effects to make more accu-
rate and structure-specific measurements.

Some of the design decisions and assumptions made 
in the toolbox may not be applicable for the study of dis-
ease. Tailoring of the toolbox for disease states is a major 
undertaking that has not been performed to-date and no 
claims are made to this effect. One particular area for 
consideration would be whether the priors could be 
updated with disease-appropriate values, though the 
purpose of priors is that the data can override them when 
reality is different to what the prior assumes, so pathol-
ogy should appear in the results. The only time this breaks 
down is if the data are so noisy that they do not support 
any deviation from the prior. In Chappell et al. (2011), it 
was observed that the spatial prior could handle reason-
ably sharp changes in perfusion, for example, due to a 
lesion, without completely masking pathology.

For the oxford_asl pipeline specifically, two areas of 
future development concern automated QC and improved 
reporting. The goal with automated QC is to spot common 
failure modes for ASL analysis such as excessive motion, 
poor registration, and spurious calibration. For motion, a 
variety of strategies may be adopted, including frame cen-
soring or variable weighting of the timeseries (Shirzadi 
et  al., 2017; Tanenbaum et  al., 2015). For reporting, the 
objective is to produce rich HTML documents with embed-
ded figures and graphics for visual inspection of key pipe-
line outputs, as opposed to the textual-only reporting of 
the current version. A dedicated interface between the 
BASIL toolbox and the ASL-BIDS standard to enable 
batch processing of large datasets is in preparation.

7.  CONCLUSION

The BASIL toolbox enables flexible and advanced analy-
sis of ASL data in the brain with a focus on the quantifi-
cation of perfusion and other haemodynamic measures. 
The toolbox is built around a Bayesian model-based 
inference algorithm. This allows it to be used on a wide 
variety of ASL data, allowing the user to exploit the 
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advantages offered by multi-delay ASL variants, whilst 
also being able to process data from more commonly 
available acquisition protocols. The BASIL toolbox is an 
integrated part of FSL, allowing it to be used with other 
neuroimaging data and be integrated into multi-modal 
neuroimaging analysis pipelines.

DATA AND CODE AVAILABILITY STATEMENT

The BASIL toolbox is distributed as part of FSL: https://fsl​
.fmrib​.ox​.ac​.uk​/fsl​/fslwiki/. The source code for the analysis 
pipeline (oxford_asl and Asl_gui) described in this paper 
can be found at https://github​.com​/physimals​/oxford​_asl. 
Quantiphyse is a GUI package aimed at non-specialist 
users that use BASIL: https://quantiphyse​.readthedocs​.io​
/en​/latest/.
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