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Abstract: Phase contrast (PC) magnetic resonance imaging (MRI) is a primary method used to quan-
tify blood flow. Cerebral blood flow (CBF) is an important hemodynamic parameter to characterize
cerebrovascular and neurological diseases. However, a critical step in CBF quantification using PC
MRI is vessel segmentation, which is largely manual, and thus time-consuming and prone to inter-
rater variability. Here, we present encoder–decoder deep learning models to automate segmentation
of neck arteries to accurately quantify CBF. The PC-MRI data were collected from 46 Moyamoya (MM)
patients and 107 healthy control (HC) participants. Three segmentation U-Net models (Standard,
Nested, and Attention) were compared. The PC MRI images were taken before and 15 min after
vasodilation. The models were assessed based on their ability to detect the internal carotid arteries
(ICAs), external carotid arteries (ECAs), and vertebral arteries (VAs), using the Dice score coefficient
(DSC) of overlap between manual and predicted segmentations and receiver operator character-
istic (ROC) metric. Analysis of variance, Wilcoxon rank-sum test, and paired t-test were used for
comparisons. The Standard U-NET, Attention U-Net, and Nest U-Net models achieved results of
mean DSCs of 0.81 ± 0.21, and 0.85 ± 0.14, and 0.85 ± 0.13, respectively. The ROC curves revealed
high area under the curve scores for all methods (≥0.95). While the Nested and Attention U-Net
architectures accomplished reliable segmentation performance for HC and MM subsets, Standard
U-Net did not perform as well in the subset of MM patients. Blood flow velocities calculated by
the models were statistically comparable. In conclusion, optimized deep learning architectures can
successfully segment neck arteries in PC MRI images and provide precise quantification of their
blood flow.

Keywords: deep learning; phase contrast MRI; blood flow; Moyamoya

1. Introduction

Sufficient blood supply in the brain is important to maintain a healthy cerebral blood
flow (CBF) and cerebral autoregulation [1]. Impaired CBF caused by vasculopathy can affect
cerebral autoregulation and increase the risk for cerebrovascular diseases and neurological
disorders [2]. Moyamoya disease is a progressive cerebrovascular disorder that disturbs
normal CBF; patients with Moyamoya have a higher risk for acute and recurrent strokes [3].
Since the brain receives its blood supply directly from the internal carotid and verte-
bral arteries, measuring the blood flow within these arteries can directly reflect CBF and
autoregulation [4]. Several medical imaging modalities have been developed to measure
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blood flow volume in arteries and arterioles. For instance, phase contrast (PC) MRI is
an imaging technique that is commonly used to characterize blood flow velocity with-
out the need for radiation and contrast agents [5]. The measured blood flow velocity
may lead to the computation of total flow volume. Several studies have demonstrated
the effectiveness of PC MRI in measuring blood flow in patients with arteriopathy [6].
However, its clinical application has been limited by the need for manual segmentation of
multiple vessels of interest. This not only deteriorates the reproducibility of the measure-
ments using PC MRI, but also affects quantitative measurements of blood flow. Although
commercial software is available for the segmentation of PC MRI, the procedures also
require adjustment of operators and thus have many of the same problems as the fully
manual method.

Deep learning is a class of machine learning that has shown great promise in several
medical imaging applications [7]. Among the advanced deep learning techniques, deep
convolutional neural networks (CNN) have been applied in segmentation and lesion
detection tasks in medical imaging [8]. Using acquired data as the input and desired data as
the output, a model is trained to determine the optimal parameters for the transformation
between input and output. The difference between the output and ground truth is used to
adjust the parameters of the model to improve the prediction iteratively. Once trained (or
the parameter values determined), the model can be applied to predict the output associated
with a new input. For example, an encoder–decoder framework has been applied in
segmenting PC MRI of cardiac images to enable fully automated aortic flow quantification,
leading to markedly improved efficiency and reproducibility of the segmentation task [9].
In the realm of applications in cervical cancer, several previous studies demonstrated that
deep learning methods were developed to identify cervical cancer to improve diagnostic
accuracy [10–12]. Specifically, models developed using MR data showed the potential
of a universal model for cervical cancer identification and staging [13–15]. Applying a
CNN to segment arteries in cervical PC MRI is challenging due to the number of arteries
of interest (including right and left carotid and vertebral arteries) and the relatively low
signal-to-noise ratio of the native images.

In this work, we present a CNN-based deep learning approach for segmenting carotid
and vertebral arteries in PC MRI data from healthy control (HC) subjects and Moyamoya
patients. Segmentations created by three different implementations were compared using
the Dice Similarity Coefficient (DSC) for overlap and predicted bulk flow volume accuracy
compared with manual segmentation.

2. Materials and Methods
2.1. Study Overview

The present study includes patient data from previously published work that assessed
CBF using various MRI methods in HC subjects and Moyamoya patients enrolled from Oc-
tober 2015 to September 2021 [16]. All procedures were approved by the local Institutional
Review Board of the institution of the senior author of this work (Ethics Committee Name:
Research Compliance Office of Stanford University Approval Code: IRB Panel #5 Approval
Date: 16 August 2023). The procedures were carried out according to the Declaration of
Helsinki after participants had given written informed consent. In short, PC MRI data were
collected using a simultaneous 3.0 T PET/MRI system (Signa, GE Healthcare, Waukesha,
WI, USA) before and after the administration of acetazolamide (ACZ, or Diamox) at a dose
of 15 mg/kg of the body weight with a maximum dose of 1000 mg [16]. The exclusion
criteria for the patients were pregnancy, history of brain injury, impaired kidneys, and
any contraindications to MRI or ACZ. Prior to the imaging sessions, all participants were
instructed not to eat or drink anything containing caffeine at least 6 h before the study.

2.2. Study Population

As shown in the flow chart in Figure 1, a total of 176 HC subjects and Moyamoya
patients were enrolled in this study. Among these participants, six of them withdrew from
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the imaging session due to extenuating circumstances such as COVID-19, and 65 cases
were excluded due to the poor quality of the PC MRI data assessed by a board-certified
radiologist (GZ), resulting in 108 subjects that were scanned in pre- and post-Diamox
conditions. A total of 107 HC subjects and 46 Moyamoya patients were included in
this study.
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Figure 1. Flowchart showing the inclusion and exclusion criteria for this study. Overall, 153 subjects
were enrolled; PC MRI data in 53 HC subjects and 16 Moyamoya patients were included in the
baseline (pre-Diamox) condition; data in 54 HC subjects and 30 Moyamoya patients were included in
the post-Diamox condition.

2.3. PC MRI Acquisition and Vessel Segmentation

PC MRI was performed using the scanning parameters in Table 1. The imaging
slice was planned between C2 and C3 of the subject perpendicular to the vessels based
on MR angiography. The magnitude and phase component (superior–inferior direction)
of each PC MRI data were averaged across 10 cardiac phases retrospectively to create
mean magnitude and phase images, which were used as the input for training the CNN
network. As shown in Figure 2, the input data for the deep learning model was generated
by concatenating the mean magnitude and phase components of the PC MRI data, resulting
in a 2 × 512 × 512 × 1 tensor for each case.
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Table 1. Scanning parameters for phase contrast MRI.

Parameters Unit Value

TR/TE ms 12.4/4.6

Flip angle degrees 20

FOV mm 180 × 180

Matrix 512 × 512

Voxel size mm 0.3516 × 0.3516 × 3

Cardiac phases 10

Average time per cardiac phase ms 88

Slice thickness mm 3

Number of slices 1

Velocity encoding cm/s 100

Repeats 2

Scan duration min 1:30
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Figure 2. Deep learning network designs. (a) Attention U-Net and (b) Nested U-Net architecture.
These two architectures differ on their approach to improved performance by using attention gates
and extra skip-connections. U-Net without attention and nested structures were also used.

Using the mean magnitude images of the PC MRI data, six vessels of interest (right
internal carotid artery [RICA], left internal carotid artery [LICA], right vertebral artery
[RVA], left vertebral artery [LVA], right external carotid artery [RECA], left external carotid
artery [LECA]) were segmented manually using the FSLeyes software version 6.0.7 (FSL,
Oxford, UK). These segmented images were considered as the output (ground truth) for
training the CNN network.
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2.4. Mathematical Description of UNets

The U-Net model and other variants of it employ an encoder–decoder architecture at
their core. This means they are mathematically divided into three types of 2D convolution
functions: (1) downsampling/encoder functions e, whose domain is four times the size of
their range, effectively halving a 2D image; (2) upsampling/decoder functions d, whose
range is four times their domain, doubling the size of the image; and (3) transformation
functions t, whose domain and range have the same dimension so they effectively only
apply some transformation to the input image without changing its size.

All of the above functions are composed with a nonlinear function such as
ReLU(x) = max(0, x) to allow stacking of complexity, since otherwise the stacked con-
volutions would be mathematically equivalent to a single convolution due to convolution
being an associative operation.

A Standard U-Net consists of four encoder functions, four decoder functions, and
2k transformation functions, where k is the sum of kernel sizes for each depth, used to
add more complexity between downsampling and upsampling. The differentiating idea
is to connect the transformed output of the encoder and decoder functions that have the
same range, effectively transferring spatial information (that is lost during subsequent
downsampling) to decoder functions. These are called “skip connections”.

For Attention U-Net, the core idea is to add an “attention gating” mechanism that
highlights certain parts of an image via depthwise multiplication with a weight matrix.
This weight matrix is computed in the attention gate as follows:

AttentionGate(di, ei−1) = σ
(
t
(

ReLU
(
t(di) + t

(
tei−1(ei−1)

))))
Here, di and ei are the output of the ith decoder function and encoder functions,

respectively. dei is a function that is the composition of transformations applied after
encoder ei. σ is the sigmoid function, which is applied elementwise. The output of the
previously defined attention gate is a 2D matrix, which is depthwise multiplied with
tei−1(ei−1), which is equivalent to the skip connection at depth i − 1.

For Nested U-Net (UNet++), the core idea is to extend the architecture of the U-Net by
adding more transformation functions between skip connections and adding more skip
connections in general. Since we have already laid the mathematical foundation of the
constituents, their specific arrangement can be seen in Figure 2b.

2.5. Deep Learning Model Architecture, Training, and Testing

Three deep learning models were implemented and trained for the segmentation task:
the original U-Net [17], an Attention U-Net [18], and a Nested U-Net [18]. As shown in
Figure 2a, the attention U-Net is designed to focus on salient features of the image required
for segmentation. As shown in Figure 2b, the Nested U-Net adds more skip pathways to
reduce the semantic gap between the features of the encoder and decoder networks.

We divided the data into an 85–15% training validation split. Each model was trained
for 1000 epochs on an RTX 3090 GPU. Adam was used as the optimizer for all models,
and was initialized with a learning rate of 0.001 [19]. The learning rate was reduced by a
factor of 2 every 30 epochs if the validation accuracy did not improve. Due to the small
size of the training data, four data augmentation strategies were applied to facilitate model
generalization of segmenting vessels while preventing overfitting:

1. ±15◦ rotation of the image;
2. ±50 pixels image translation on the x and y axes;
3. 0.7 to 1.3 times image scaling;
4. ±15◦ image shear.
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2.6. Flow Velocity and Volume Measurements

The phase images of the PC MRI data were used to quantify blood velocity. The area
of each region of interest (ROI) was computed using the following equation:

ROI area = pixel area × total pixel count

To account for the velocities measured in opposite directions, negative and positive
velocities were averaged separately and summed to obtain the net average velocity. The
volume flow was then computed using the following equation:

Net average volume f low = ROI area × Net average velocity

3. Statistical Analysis

The receiver operating characteristic (ROC) curve was used to evaluate the perfor-
mance of each model to segment the six arteries (left and right ICAs, ECAs, and VAs) on a
pixel-by-pixel basis. False positives in this study included any segmentations made that
were not part of the manual segmentation masks. The DSC, a metric that measures overlaps
between two images, was calculated at the Youden index point of the deep learning model.

The segmentation results using the deep learning models were compared with the
results obtained by manual segmentation (ground truth) using a Bland-Altman analysis.
The Wilcoxon rank-sum tested average volume flows for each subset (HC and MM). Paired
t-tests were conducted to compare the flow and volume measured by the deep learning
models and the ground truth. The statistical significance level used for all tests was 0.05,
and they were performed using MATLAB 2019a (MathWorks, Natick, MA, USA).

4. Results
4.1. Segmentation Results

Figure 3 shows the segmentation results from an HC subject and a patient with MM
disease. In these example cases, all three deep learning models successfully segmented the
six arteries of interest.
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Figure 3. Segmentation results of the 3 deep learning models (U-Net, Attention U-Net, and Nested
U-Net) in a HC subject and a Moyamoya patient. (A) Segmentation results in a normal subject.
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(B) Segmentation results in a Moyamoya patient. Overall, all deep learning models successfully
segmented the vessels of interest in pre-vasodilation conditions. The segmentation results in each
model is shown in red circles.

Table 2 shows the DSC in both pre- and post-Diamox conditions for the three deep
learning models. Figure 4 shows the ROC plot for all three models. The areas under the
curves (AUCs) are likewise high for all models: 0.96, 0.99, and 0.98 for U-Net, Attention
U-Net, and Nested U-Net, respectively. Nested U-Net outperformed the Attention U-Net
when a decision threshold was chosen to minimize false positives; however, for all other
decision thresholds, the Attention U-Net outperformed both other models.

Table 2. Dice scores achieved by each model using the manual segmentations as the ground truth.

Healthy
Control
Baseline
(n = 53)

Moyamoya
Baseline
(n = 16)

Healthy
Control
Diamox
(n = 54)

Moyamoya
Diamox
(n = 30)

All Subjects
in All

Conditions
(n = 153)

U-Net 0.92 ± 0.03 0.58 ± 0.31 0.92 ± 0.05 0.73 ± 0.18 0.81 ± 0.21

Attention U-Net 0.87 ± 0.06 0.69 ± 0.21 0.90 ± 0.05 0.76 ± 0.15 0.85 ± 0.13

Nested U-Net 0.85 ± 0.11 0.79 ± 0.21 0.91 ± 0.06 0.80 ± 0.13 0.85 ± 0.14
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U-Net, and Neste U-Net, respectively.

4.2. Flow and Velocity Measurements

Figure 5 shows the Bland-Altman analyses for the flow volume measured by the deep
learning methods and ground truth. For both the HC and MM cohorts, good agreement
in segmentation and flow volume measurements can be seen for all three deep learning
models. The differences in flow between the ground truth and deep learning models ranged
between ±1.8 mL/s.
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5. Discussion

In this work, we demonstrated the effectiveness of applying deep learning models to
segment arteries in PC MRI images and compute hemodynamic parameters. Specifically, we
evaluated the effectiveness and accuracy of using both magnitude and phase parts of the PC
MRI data as input for the deep learning model. The inclusion of phase contrast images gave
the model the ability to measure flow velocity and volume within arteries of interest. Our
data revealed that the model can efficiently segment the arteries of interests with low false
positive rates and high DSC. Furthermore, all three models accurately estimated volume
flow for healthy controls with Nested U-Net and Attention U-NET showing marginally
higher accurate estimations than the Standard U-NET. The novelty and main contributions
of this work include that (1) we utilized both magnitude and phase components of the
MRI data for deep learning based segmentation tasks; and (2) our models were capable of
detecting relatively small anatomical features in MRI data.

5.1. Performance of the Deep Learning Models

All three deep learning models performed well, with DSC higher than 0.80. Statistical
results indicated that their similar dice scores achieved no significant difference in their
detecting the arteries of interest. However, the Standard U-Net model showed lower
accuracy in segmenting the vessels in Moyamoya patients than in the HC cohort, likely due
to vessel occlusion and/or stenosis in Moyamoya cases. Interestingly, the Nested U-Net
and Attention U-Net did not show this discrepancy while their performances were not
significantly different from the Standard U-Net. These findings were further supported
by the ROC curves of the three models, showing the Standard U-Net having generally
lower AUC than the Attention and Nested U-Nets. It can also be observed that although
the Attention U-Net can achieve better true positive performance than the Nested U-
Net, the Nested U-Net marginally outperformed the Attention U-Net if minimizing false
positives is desired. Based on these findings, Attention and Nested U-Nets should be
the preferred choices due to their superior and non-discriminative performances over the
Standard U-Net.

We avoided splitting the data into three sets due to the small size of our dataset.
Instead, we employed a variety of augmentations to artificially reduce the dataset size
to prevent overfitting, which left us with 20 samples for validation and 130 samples for
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training. Dividing this data further into a test set would result in high variance estimates
of test accuracy due to low sample count. The augmentations increased the number of
images without increasing the underlying information content. In other words, all the
augmentations of a given image would seem redundant to a human observer, since they
would obviously depict the same underlying structure. However, these augmentations
are non-trivial to our model and force invariance along certain axes that are obvious to
humans such as rotations, translations, shears, etc. In total, a given image can appear in
approximately at least 45 million different ways.

5.2. Flow Volume and Velocity Measurements

As expected by the model’s performance based on DSC and ROC statistics, the models
demonstrated similar performance for measuring flow volumes with the ground truth.
Whilst Nested and Attention U-Nets were able to detect these arteries, the boundaries
created for them may not be consistent with the ground truth, achieving a high DSC. The
Bland-Altman analyses implied that when compared with the ground truth, the models
achieved good agreement with most data points within the standard deviation limits.
This was true for the Standard and Attention U-Net, showing potential for fine-tuned
single artery accuracy for this application. Specifically, comparisons with the ground truth
further exhibited that each artery had similar impacts of segmentation accuracy in the
three deep learning models. In general, Nested U-Net showed the most promise among
these three models in breaking the barrier between accurate segmentation results and
flow calculation.

5.3. Comparison with Similar Studies on Image Segmentation

While image segmentation on phase contrast scans of the neck has not been broadly
investigated in patients with cerebrovascular diseases, deep learning has been employed
to perform similar tasks in lesion segmentation in patients with glioma or stroke. For in-
stance, Kihira et al. applied the DenseNet121 based U-Net framework to identify and stage
glioma using MR FLAIR data. A DSC score of 0.93 was achieved in a cohort consisting of
208 patients [20]. In terms of image segmentation for stroke patients, Shin et al. demon-
strated that an efficient implementation of the Standard U-NET can achieve a DSC of 0.77
for segmenting stroke lesions in T1-weighted MRI scans [21].

The use of deep learning to segment objects of interest in MRI images is now a well-
known approach. In this study, we focused on Standard U-Net and its variations, such as
Attention and Nested (UNet++). However, in the field of medical imaging segmentation,
there are several other state-of-the-art models used. For instance, the SegNet approach is
an encoder–decoder network that produces class probabilities for each pixel. The encoder
convolution produces feature maps using filter banks which are batch normalized and
adjusted using ReLU = max (0, x). The 2 × 2 max-pooling and non-overlapping window
results in the output being subsampled by a factor of 2. Each decoder corresponds to the
13 encoder layers and the final decoder output is sent to a soft-max classifier which indepen-
dently classifies each pixel. Due to the use of pooling indices, the model works efficiently
using low memory, but can be used for large images with high accuracy. While traditionally
used for landscape segmentation, it was recently utilized successfully in medical imaging.
Another study found that SegNet was better able to classify infected and non-infected lung
tissue [22]. Its ability to segment landscapes was beneficial in distinguishing large features
in normal and abnormal tissue. However, the loss of information during unpooling results
in low resolution when compared to UNet models that use the entire feature map. The
low resolution of this model would prevent it from providing accurate segmentation of
small arteries and paired cerebral blood flow data. The ResUNet++ is an improvement
based on the Deep Residual U-Net architecture, which combines U-Net and deep residual
learning [23]. The ResUNet++ model utilizes the attention block, residual blocks, Atrous
Spatial Pyramid Pooling (ASPP), and the squeeze and excitation block. The addition of
deep residual learning decreases the reuse of features between blocks, therefore allowing
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deeper neural networks that could resolve issues with degradation. The residual blocks
combine the convolutional layers, batch normalization, and linear rectification (ReLu).
Typically, there are three encoder layers with three corresponding decoder layers, as well as
ASPP. The attention block helps generate more effective feature maps by analyzing which
positions require more attention before the encoder units and ASPP allows for broader
context after the encoder outputs are filtered. The output of the decoder is also fed to the
ASPP, which results in a 1 × 1 convolution. The deep neural network of the model reduces
percent error and allows higher image classification accuracy. ResUNet++ has been used to
successfully segment lungs in chest X-ray images with a small data set and high accuracy,
as well as distinguish different cardiovascular structures [24,25]. Compared to the UNet
models used in our study, ResUNet++ has similar validation accuracy, but requires a much
longer training time and more memory.

5.4. Implications of Results for General Readers

Our study focused on developing advanced artificial intelligence methods to identify
important anatomical features in medical images. These methods were designed to improve
clinical workflow whereby manual segmentation is needed to determine blood flow in
arteries of the neck. The results from this study suggested that our methods successfully
achieved these tasks in both normal subjects and patients in different physiological condi-
tions. Our techniques presented in this work may be scaled and adapted to similar tasks of
segmentation in medical imaging applications.

6. Limitations

The accuracy of the deep learning models was limited to select healthy control and
Moyamoya cases when segmented by the Nested U-Net. Moyamoya patients have smaller
arteries with generally lower blood flow, which may lead to relatively poorer segmentation
accuracy. The arteries of interests in this study also are smaller 2D objects than the vessels
typically used in cardiac studies previously used in DL studies [9]. This created a challenge
for automatic segmentation, especially with the presence of other blood vessels of similar
shape and even size. Other limitations included the requirements of having a reconstructed
phase image based on several cardiac phases. The accuracy of our models was also limited
by the small number of Moyamoya cases. Additional data augmentation may be considered
to increase the number of training cases. Whilst we understand that there are various other
implementations of the standard U-NET for image segmentation tasks and the importance
of comparison between these techniques, we presented two such implementations and
their results in this work. Since our institution treats several new Moyamoya patients each
month, we will consider adopting different U-Net structures, such as UNet++ and MAnet,
in future studies. Furthermore, the performance of the model may also be improved
by including additional MR scans (such as MRA) obtained in the same session. Other
challenges regarding data leaking may also need more systematic investigation to improve
the performance of the segmentation algorithm.

7. Conclusions

This study demonstrated the effectiveness of deep learning to segment cervical arteries
on PC MR scans, allowing the quantification of flow volume.
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