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A B S T R A C T

Arterial spin labeling (ASL) MRI is a non-invasive technique for the quantification of cerebral perfusion, and
pseudo-continuous arterial spin labeling (PCASL) has been recommended as the standard implementation by a
recent consensus of the community. Due to the low spatial resolution of ASL images, perfusion quantification is
biased by partial volume effects. Consequently, several partial volume correction (PVEc) methods have been
developed to reduce the bias in gray matter (GM) perfusion quantification. The efficacy of these methods relies on
both the quality of the ASL data and the accuracy of partial volume estimates. Here we systematically investigate
the sensitivity of different PVEc methods to variability in both the ASL data and partial volume estimates using
simulated PCASL data and in vivo PCASL data from a reproducibility study. We examined the PVEc methods in two
ways: the ability to preserve spatial details and the accuracy of GM perfusion estimation. Judging by the root-
mean-square error (RMSE) between simulated and estimated GM CBF, the spatially regularized method was
superior in preserving spatial details compared to the linear regression method (RMSE of 1.2 vs 5.1 in simulation
of GM CBF with short scale spatial variations). The linear regression method was generally less sensitive than the
spatially regularized method to noise in data and errors in the partial volume estimates (RMSE 6.3 vs 23.4 for
SNR ¼ 5 simulated data), but this could be attributed to the greater smoothing introduced by the method.
Analysis of a healthy cohort dataset indicates that PVEc, using either method, improves the repeatability of
perfusion quantification (within-subject coefficient of variation reduced by 5% after PVEc).
Introduction

Arterial Spin Labeling (ASL) MRI is a non-invasive technique to
measure perfusion (cerebral blood flow, CBF) using blood-water as an
endogenous tracer (Detre et al., 1992). A pair of images are obtained in
an ASL experiment: label and control. The difference between the label
and control image is proportional to the perfusion of the tissue in the
imaging region, being a direct measure of the delivery of labeled
blood-water created by RF inversion applied to the neck. The ASL
Consensus Paper has recommended single-PLD PCASL (pseudo-contin-
uous ASL labeling with a single post-labeling delay) as the standard
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implementation for ASL experiments due to the simplicity of data
collection and CBF quantification (Alsop et al., 2014). Whilst obtaining
one ASL image (single-PLD) is sufficient for perfusion quantification in
principle, acquiring multiple ASL images (multi-PLD) enriches the in-
formation to estimate CBF more accurately (Van Osch et al., 2007).
Hence multi-PLD remains popular in neuroimaging studies where greater
acquisition time and analysis expertise are available.

The ASL signal obtained from the brain broadly arises from three
sources: gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). The ASL signal from CSF is ideally zero on the basis that no labeled
blood water should reach the CSF (Golay et al., 2004; Johnson et al.,
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Abbreviations

ASL Arterial spin labeling
CASL Continuous ASL
CBF Cerebral blood flow
CSF Cerebrospinal fluid
GM Gray matter
LR Linear regression
mLTS Modified least trimmed squares
PASL Pulsed ASL
PCASL Pseudo-continuous ASL
PD Proton density

PLD Post-labeling delay
PSF Point spread function
PV Partial volume
PVE Partial volume effects
PVEc Partial volume correction
RMSE root-mean-square error
ROI region of interest
SNR Signal-to-noise ratio
VB Variational Bayesian
WM White matter
wsCV Within-subject coefficient of variation
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2005). In the context of perfusion MRI, it is often the GM that is of pri-
mary interest due to its major role in the central nervous system and that
subtle changes of GM CBF have been observed in studies of various dis-
eases including dementia (Le Heron et al., 2014). However, ASL data has
a low spatial resolution with a voxel size of 3–5 mm that is unlikely to
encode a single type of tissue, particularly in cortical regions where the
thickness of GM is between 2 and 4 mm (Henery and Mayhew, 1989),
leading to partial volume effects (PVE). Whilst all MR imaging in the
brain suffers from PVE, it is particularly noticeable in perfusion imaging
because of the distinctly different perfusion properties of GM and WM: a
perfusion ratios of 3:1 is quite commonly assumed.

It is increasingly being recognized that it may be important to correct
PVE to allow GM CBF to be quantified independently of any confounding
effects of partial voluming with either WM or CSF. This may be especially
relevant for studies involving patients with tissue atrophy (Mutsaerts
et al., 2014) where changes in tissue content in voxels could mask or be
misinterpreted as changes in perfusion. Several partial volume correction
(PVEc) methods have been developed to correct PVE in perfusion esti-
mation from ASL data including linear regression (LR) (Asllani et al.,
2008) and a spatially regularized technique that uses spatial priors in a
Bayesian inference framework for perfusion quantification (Chappell
et al., 2011). In the LR approach, each voxel intensity is considered as the
weighted sum of different tissue contributions. By assuming the perfu-
sion of the central voxel to be equal to its neighbors in a small region,
defined by a regression kernel, the perfusion from each type of tissue is
estimated by solving a linear system of equations. The spatially regu-
larized method, motivated by the use of spatial information in the LR
approach, exploited adaptive spatial priors within an existing Bayesian
approach to ASL perfusion quantification, adding a second WM compo-
nent to the model used. Studies on multi-PLD PASL have demonstrated
the superiority of the spatially regularized method for maintaining
spatial details in the estimated GM CBF image over the LR approach
(Chappell et al., 2011). Both PVEc methods require knowledge of the
exact fraction of tissue in each voxel, known as the PV estimates, which
are typically computed by tissue segmentation from a high-resolution
T1-weighted image. However, flaws in the segmentation procedures
may introduce error into the PV estimates that could affect the accuracy
of PVEc. In addition, PVEc will also be affected by limitations in ASL data
acquisition such as background noise and mismatch in the point spread
function (PSF) between the ASL acquisition and that of the structural
image from which the PV estimates are obtained. The impact of these
factors on PVEc methods has not been fully explored, and a compre-
hensive study is needed to investigate how PVEc methods respond to
these factors.

In the present study, we investigate the sensitivity of existing PVEc
methods to errors in the PV estimates when applied to PCASL. Two
studies were performed: firstly, a simulation study was used to investi-
gate the sensitivity of the methods to a variety of theoretical sources of
variability including random error and bias in the PV estimates, along
with the effect of noise on the ASL data and differences in the PSF
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between ASL and structural images. Simulated single-PLD PCASL data
were generated using the tissue kinetic model and the parameters in the
ASL Consensus Paper (Alsop et al., 2014). Simulated multi-PLD PCASL
data were created using the parameters (PLD and bolus duration) of a
previously published reproducibility study of multi-PLD PCASL in neu-
roimaging studies (Mezue et al., 2014). Secondly, we performed PVEc on
a healthy cohort dataset obtained from this study (Mezue et al., 2014).
The repeatability of CBF images from each PVEc method was assessed by
computing the within-subject coefficient of variation (wsCV) under the
assumption that PVEc should improve the overall repeatability of
perfusion quantification by reducing random variability in measured CBF
due to PVE in each subject.

Theory

A general description of ASL signal that incorporates both GM and
WM contributions can be written as:

ΔMðtÞ ¼ PGM ⋅ΔMGMðtÞ þ PWM ⋅ΔMWMðtÞ (1)

where ΔM is the longitudinal magnetization difference between ASL
label and control images, P is the PV estimates of each type of tissue, and t
is the time since the start of RF inversion. It has been assumed that the
contribution from CSF is zero since no ASL difference magnetization
should be observed in the CSF. This formulation holds for both single and
multi-PLD ASL data. Independent estimation of either gray or white
matter magnetization, and hence their perfusion, is ill-posed in any given
voxel since only a single measurement of magnetization (ΔM) is avail-
able. PVEc methods seek to address this by using neighboring voxels,
differing in the way this information is incorporated into the estima-
tion process.

Linear regression

The linear regression approach to correct PVE in ASL assumes that the
CBF in both GM and WM can be treated as constant within a 2D
regression kernel with size n� n and centered at a voxel in which both
GM and WM values are required. Assuming identical GM and WM CBF
values in all the voxels, the ASL difference signal in the voxels within the
kernel can be written in matrix form, based on Eq. (1), as:

ΔM ¼ PΔM (2)

Where ΔM is a vector of length n2 containing all the ASL difference
values, P is n2 x 2 matrix of GM and WM PV estimates and ΔM is a vector
with two entries for the gray and white matter perfusion in the kernel. A
numerical solution can be obtained by the following equation that min-
imizes the squared error and is equivalent to linear regression:

ΔM ¼ ðPT ⋅PÞ�1⋅PT ⋅ΔM (3)
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where ðPT ⋅PÞ�1⋅PT is the pseudo-inversion matrix of P. This calculation is
repeated at every voxel within the brain to arrive at a map of PV cor-
rected GM andWMASL difference signal. The method can also equally be
applied to the final quantified perfusion image (Steketee et al., 2015;
Zhao et al., 2016) and in principle can be used with different shapes of
kernels, as long as they can be specified in terms of whole voxels.
Table 1
List of simulation parameters.

Parameter Value

Gray Matter
CBF (ml/100 g/min) 60 (flat), 30 (hypo), 90 (hyper)
Δt (ms) 700
T1 (ms) 1300
λ 0.98
White Matter
Spatially regularized

An alternative spatially regularized approach as proposed by Chap-
pell et al. (2011) adopts the formulation in Eq. (1), but subjects both the
GM and WM to spatial priors within a Variational Bayesian (VB) infer-
ence scheme. This method was motivated by the same principle as the LR
method, but it relaxes the strict kernel assumption of LR by allowing the
spatial regularization to be adaptively determined by the data. In
essence, the algorithm attempts to estimate both GM and WM contri-
butions in every voxel, with each being subject to a prior distribution on
the value derived from the estimated values in the neighboring voxels,
the so-called spatial prior (Groves et al., 2009; Penny et al., 2005). This is
an iterative scheme whereby the voxel values are updated, followed by
an update to the prior and so on. Through Bayes’ theorem the estimated
values in any given voxel reflect both the measured data in the voxel and
the prior information, with the balance being determined automatically,
hence making the spatial regularization adaptive to the data. Although it
was originally demonstrated on multi-PLD ASL data, the approach is also
applicable to single-PLD ASL.

Methods

Data

One hundred high-resolution PV estimates images (GM, WM, and
CSF) were randomly extracted from the first release of the UK Biobank
Imaging Study to be used in the simulated experiments (Miller et al.,
2016). These PV estimates were segmented from the T1-weighted images
of the same study. Scan parameters were: 3D MPRAGE; sagittal; in-plane
acceleration factor ¼ 2; TI/TR ¼ 880/2000 ms, voxel
size ¼ 1 � 1 � 1 mm; matrix ¼ 208 � 256 � 256; acquisition
time ¼ 4min54s.

ASL MRI data from eight subjects were retrospectively analysed from
the reproducibility study on optimization and reliability of multi-PLD
PCASL by Mezue et al. (2014). Scan parameters were: PLD ¼ 0.25, 0.5,
0.75, 1, 1.25, 1.5s; bolus duration ¼ 1.4s; TR/TE ¼ 4,000/13 ms;
FOV ¼ 220 � 220; matrix ¼ 64 � 64; 24 sequential ascending slices (no
slice gap); slice thickness¼ 4.95mm; slice acquisition time¼ 45.2ms; 12
consecutive label and control images; total scanning time: 6.4min. Two
additional proton density (PD) weighted images with TR¼ 6000 ms (one
using the head and the other the body coil) were acquired to calibrate
estimated CBF into absolute units. The head calibration was collected to
compute the equilibrium magnetization of the arterial blood, and the
body calibration image of each subject was used to correct the ASL data
for the uneven sensitivity profile of the head coil (Wu et al., 2011). This
dataset was used in the healthy cohort experiments.
CBF (ml/100 g/min) 20
Δt (ms) 1000
T1 (ms) 1100
λ 0.82
Arterial Blood
T1 (ms) 1600
Sequence
τ (ms) 1800
PLD (ms) 1800 (Single-PLD)

300, 600, ⋯1800 (Multi-PLD)
α 0.91
Repeat 10 (Single-PLD)

5 (Multi-PLD)

CBF: cerebral blood flow, Δt : arrival time, τ: bolus duration, PLD: postlabeling delay, α:
labeling efficiency, λ: blood tissue partition coefficient.
Partial volume estimation

PV estimates at the resolution of the ASL data were computed from
each subject by affine registration and tissue segmentation. First, brain
tissue was extracted from high-resolution T1-weighted structural images
to remove the non-brain components using the FSL tool BET (Jenkinson
et al., 2002b). Then they were segmented to produce PV estimates for
GM, WM, and CSF using the FSL tool FAST (Zhang et al., 2001). Affine
registration of T1-weighted structural images and the brain mask of ASL
resolution (computed by taking the mean of ASL control images across all
PLDs) was performed using the FSL tool FLIRT with 6 degrees of freedom
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(Jenkinson et al., 2002a). For use in PVEc of ASL data, the
high-resolution PV estimates were transformed to the same (low) reso-
lution as the ASL image space by subsampling and interpolation as
described by Chappell et al. using the FSL tool applywarp (Chappell et al.,
2011). PV estimates of CSF were not used in the analysis. Finally, the PV
estimates of GM and WM with voxel intensity less than 10% were
excluded from the analysis, by replacing values less than 0.1 by 0 in the
relevant PV estimates. The resulting PV estimates were denoted as the
reference PV estimates.
Simulated data

Using the one hundred PV estimates from the individuals extracted
from the Biobank data, simulated ASL difference datasets of both single
andmulti-PLD PCASLwere created by applying the general kinetic model
proposed by Buxton et al. (1998). For each simulated dataset, four
different patterns of GM CBF were applied using the parameters listed in
Table 1, with variations in the GM CBF map as the following:

Simulated dataset 1 – Flat GM CBF: homogeneous GM CBF of 60 ml/
100 g/min throughout the whole brain.
Simulated dataset 2 – Hyper/hypo GM CBF: homogeneous GM CBF of
60 mL/100 g/min with a hypoperfused (30 mL/100 g/min, spherical
region of radius 10 voxels) region to the right of the brain and a
hyperperfused (90 mL/100 g/min, spherical region eight voxels
radius) region to the left of the brain.
Simulated dataset 3 – Slow Sinusoidal GM CBF Variation: GM CBF of
60 mL/100 g/min with superimposed sinusoidal variations in all
three spatial dimensions, with a period equal to 30 voxels and an
amplitude of 10 mL/100 g/min, resulting in a smoothly varying GM
CBF over the approximate range 50–70 mL/100 g/min.
Simulated dataset 4 – Fast Sinusoidal GM CBF Variation: GM CBF of
60 mL/100 g/min with superimposed sinusoidal variations in all
three spatial dimensions, with a period equal to 10 voxels and an
amplitude of 10 mL/100 g/min resulting in a smoothly varying GM
CBF over the approximate range 50–70 mL/100 g/min.

In all cases, the WM CBF was set to 20 mL/100 g/min throughout the
whole brain. The ASL difference signal was derived by summing the two
kinetic curves after multiplication of each component by the reference PV
estimates using the model developed by Buxton et al. as in Eq. (1). For
each simulated dataset of both single and multi-PLD, a TR of 4 s and a
total acquisition time of 4 min were assumed based on the ASL Consensus
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Paper for single-PLD PCASL (Alsop et al., 2014) and the reproducibility
study data used in healthy cohort experiments for multi-PLD PCASL
(Mezue et al., 2014). Under such conditions, the single and multi-PLD
simulated data include ten and five repeats respectively. White noise
was introduced to simulate the MRI background noise using white noise
according to N ð0; SDÞ, where SD is defined as the ratio of reference
signal intensity to signal-to-noise ratio (SNR), i.e.
SD ¼ ref ðΔMtðtÞÞ =SNR. The reference signal intensity ref ðΔMtðtÞÞ was
chosen to be the maximum signal intensity of a kinetic curve at GM
CBF ¼ 60 mL/100 g/min, Δt ¼ 0.7s, and τ ¼ 1.8s. Fig. 1 illustrates the
process of creating the simulated data.

Perfusion estimation and partial volume correction

In both single and multi-PLD ASL datasets, perfusion was estimated
by fitting the kinetic curve to ASL difference data using spatial VB
method in the FSL tool BASIL (Chappell et al., 2009). PVEc was per-
formed by LR (Asllani et al., 2008) and spatially regularized approaches
(Chappell et al., 2011). The LR method was implemented in two ways:
(1) application of LR on ASL difference data before perfusion estimation;
(2) application of LR on estimated CBF maps after perfusion estimation.
For both implementations, the regression kernel size was set to 3� 3 and
Fig. 1. Schematic of the process of generating data for the simulation based experiments. Four d
on the left. In each case the GM CBF map was used to generate simulated ASL difference data
estimate from an individual that had already been downsampled to the same space. To this was
from the same individual and a presumed WM GBF of 20 ml/100 g/min. Data were generated us
simulated ASL difference data. In experiment 2 (yellow), Gaussian smoothing was applied to sim
to PV estimates during the generation of the difference data. In experiment 4 (blue), bias was int
experiments 3 and 4, any adjustment made to the GM PV estimates was mirrored in the WM P
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5� 5. In the spatially regularized approach, 200 iterations were per-
formed in each analysis to ensure convergence. Fig. 2 shows the CBF
estimation and PVEc process.

For the healthy cohort experiments, voxel-wise calibration was per-
formed to compute GM CBF in the absolute unit (ml/100 g/min) using
the method proposed by Okell et al. (2013). Specifically, a coil sensitivity
map was derived by dividing the head calibration image by the body
calibration image. The ASL difference image was corrected using the coil
sensitivity map before model-fitting. A PD image was obtained by
dividing the head calibration image by the coil sensitivity map. This PD

image was then corrected by multiplying by the factor
�

1
1�e�TR=T1;tissue

�
,

where T1;tissue ¼ 1:3s, to compute the M0t image (Alsop et al., 2014). The
M0a image was computed by multiplying the M0t image by the
blood-water partition coefficient of 0.9 (Mezue et al., 2014). Then, a 2-D
median filter of kernel size 3 � 3 was applied to theM0a image to reduce
noise. Due to the PVE on the edge of theM0a image, the signal intensities
of the voxels on the edge of the brain were substantially less than those
inside the cortex, causing overestimation to the absolute CBF values on
the edge of the brain. Such issue was resolved by erosion and extrapo-
lation techniques. First the M0a image was eroded by three voxels. The
eroded voxels were extrapolated by taking the mean in a 5 � 5
atasets were created for both single and multi-PLD ASL data based on the CBF maps shown
according to the kinetic model of (Buxton et al., 1998) and then multiplied by the GM PV
added a WM ASL difference signal generated using the same model, the WM PV estimates
ing PV estimates from 100 individuals. In experiment 1 (red), white noise was added to the
ulated ASL data (no noise was added). In experiment 3 (green), random errors were applied
roduced to PV estimates during the generation of the difference data. For the data for both
V estimates, this process is not shown on the diagram.



Fig. 2. Perfusion estimation and partial volume correction. PVEc was performed using three methods – linear regression on ASL data, linear regression on CBF map, and spatially
regularized method.
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neighborhood to create the corrected M0a image. Finally, the estimated
CBF images were calibrated by the corrected M0a and an assumed
inversion efficiency of 0.88 (Okell et al., 2013).
Simulation study

Four numerical experiments were conducted to compare the effects
on PVEc of variation in the degree of noise in the ASL data and PV es-
timates. They were performed using both single-PLD and multi-PLD
simulated ASL data. For each experiment, the experimental parameters
are listed in Table 2, and the results were assessed by root-mean-square
error (RMSE) and region of interest (ROI) analysis.

Experiment 1: impact of background noise of ASL data on PVEc
This experiment investigated the influence of background noise in

ASL data on the results of each PVEc method. The same reference PV
estimates were used in each PVEc method as were used to create the
simulated data for each subject. This experiment provided a baseline for
the subsequent experiments under the ideal case where the true PV es-
timates were known and thus can be used for PVEc.

Experiment 2: impact of resolution mismatch on PVEc
As discussed, one of the limitations of PVEc is an unmatched PSF

between structural and ASL images even when differences in matrix size
(and thus voxel dimensions) are accounted for. This was modeled by
Table 2
Experimental parameters.

Parameter Value

Experiment 1
SNR 5, 10, 15, 20, ∞
Experiment 2
FWHM 0, 1.5, 3, ⋯, 7.5, 9 mm
SNR ∞
Experiment 3
σ 0, 0.025, 0.050, ⋯, 0.175, 0.200
SNR ∞
Experiment 4
b �0.5, �0.4, ⋯, 0, 0.1, ⋯, 0.5
SNR ∞

SNR: signal-to-noise ratio in simulated ASL data; FWHM: full width at half maximum for
PSF; σ: standard deviation in random errors of PV estimates; b: bias factor in biased error of
PV estimates.
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blurring the simulated noise-free ASL data with a 3D isotropic Gaussian
blurring kernel defined by a range of standard deviation values θ

(θ ¼ ffiffiffiffiffiffiffiffiffiffi
8ln2

p
=FWHM and FWHM values are listed in Table 2). PVEc and

CBF estimation were performed on the blurred ASL data using the
reference PV estimates.

Experiment 3: impact of random errors in PV estimates on PVEc
This experiment assessed the sensitivity of each PVEc method to

variabilities in the PV estimates. Random errors were added to each of
the one hundred reference PV estimates assuming that the errors could be
modeled as N ð0; σÞ, and a range of σ were considered as indicated in
Table 2. A total of one hundred distorted PV estimates were created using
the Biobank datasets.

Experiment 4: impact of bias in PV estimates on PVEc
This experiment aimed to compare PVEc methods when there is a

systematic bias in PV estimates. Biased PV estimates were generated in
two steps: (1) altering the reference GM PV estimates using a non-linear
transformation to create biased GM estimates; (2) computing the biased
WM PV estimates using the reference GM and WM PV estimates and the
newly derived biased GM PV estimates in the following:

PVbias; GM ¼ PV expðbÞ
ref ;GM

PVbias;WM ¼ PVref ;GM þ PVref ;WM � PVbias;GM
(4)

where PVref and PVbias are the reference and biased PV estimates
respectively, b is the bias factor, which is applied to reference GM PV
estimates using the range of values given in Table 2. Fig. 3 illustrates the
effect of non-linear transformation with different b values. This function
exchanges PV in GM forWM, assuming that there is some inherent bias in
the PV estimation process between these two tissue types. The biased PV
estimates were used in PVEc and CBF estimation using the three methods
for noise-free simulated ASL data.

Evaluation metrics for partial volume correction

RMSE analysis
In evaluating the accuracy of PV corrected perfusion for the simulated

data, RMSE was computed for each PVEc method in the
following equation:



Fig. 3. Biased PV Estimates. Biased GM PV Estimates were created by applying a non-
linear transformation to the reference GM PV estimates.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1

�bf � f
�2s
RMSECBF ¼
N

(5)

where bf and f are estimated and simulated CBF respectively, N is the
total number of voxels within the brain mask in each model-fitting
experiment.

ROI analysis
The ROI based method introduced by Asllani et al. (2008) was also

used to examine the effects of different PVEc methods. Nine ROIs were
defined based on the voxel intensity of estimated PV maps. Each ROI
covered a 10% range of the PV estimates, and voxel intensity less than
10% were omitted. The resulting ranges were: 10%–20%, 20%–30%, …
90%–100%. In each ROI, the mean GM CBF with and without PVEc was
computed. The ROI methodology was originally proposed on the basis
that pure GM CBF should be independent of the fraction of GM PV esti-
mates because perfusion is an implicit measurement of the density of
tissue CBF at each voxel. For the simulations, this will hold true for the
homogenous GM CBF case. For the two cases of sinusoidal variation, it is
still expected to be approximately true over the ensemble of brain voxels,
albeit with a larger variability within the ROI. This is based on the
assumption that the ROIs defined here are a pseudo-random sampling of
the brain and the sinusoidal variations used are applied without any
imposed correlation to the brain structure. The ROI analysis is no longer
valid for the hyper/hypo perfusion case and thus was not computed.

The ROI method was extended to allow quantitative comparisons of
the PVEc performance by considering a linear regression of GM CBF and
GM PV estimates for ROI in the range 10%–90% using a least-square fit.
The slope of this regression was recorded, a zero slope would be expected
to represent good PVEc as it would imply independence of estimated CBF
with PV estimates.

Repeatability study
We assessed the repeatability of the PVEc methods by analyzing the

inter-session coefficient of variation of GM CBF calculated from the
healthy cohort data collected by Mezue et al. (2014). The hypothesis for
the analysis on real data was that the inter-session variability should
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reduce after PVEc, on the assumption that PVE will introduce between
session variability due to the different position of the brain in each
scanning session and that PVEc removes this bias from the amount of GM
tissue in each voxel. There will in practice be other sources of physio-
logical variability apart from those related to PVE, including those
identified by Clement et al. (2017). Thus, although we hypothesize that a
reduction might be achieved by an effective PVEc strategy, it could at
best only partially improve the repeatability. Ideally, the GM CBF after
PVEc would be identical between each session if there are no flaws in
registration (and in the absence of noise) and if PVEc removes PVE
completely.

A transformationmatrix (Matrix 1) from ASL image to high-resolution
space was computed by registering the CBF map without PVEc to the
structural image of each subject. An initial transformation matrix was
obtained using the FSL tool FLIRT between the calibration and structural
images. This transformation was then refined with a boundary-based
registration (BBR) cost function that uses the boundary of WM, which
was segmented from the structural image. This implementation is
available in the asl_reg function part of the BASIL toolbox in FSL. For each
subject, a second transformation matrix (Matrix 2) was obtained by
registering the high-resolution T1-weighted image to the standard brain
(MNI152_T1_2 mm) using the FSL tool FLIRT (Jenkinson and Smith,
2001). Matrix 2 was used to initialize the estimation of the spline co-
efficients (warp) from structural to standard space using the FSL tool
FNIRT (Jenkinson et al., 2012). Finally, the GM CBF map was trans-
formed to the standard space using the warp and Matrix 1 with the FSL
tool applywarp.

We evaluated the repeatability of each PVEc method using within-
subject coefficients of variation (wsCV) within three ranges of GM PV
estimates ROIs: 10%–40%, 40%–70%, and 70%–100%. Within-subject
coefficients of variation were computed as the ratio between the stan-
dard deviation of voxel-wise absolute differences of repeated GM CBF
estimates and the mean repeated GM CBF estimates in the
following equation:

wsCV ¼ SDðf1 � f2Þ
meanðf1; f2Þ � 100% (6)

where f is the GM CBF. The metric was computed for the three repeated
experiments (session, week, and month repeat).

Results

Simulation study: single-PLD data (kernel size for 3� 3 the LR methods).

Fig. 4 shows the estimated GM CBF maps of an example subject from
the simulation of single-PLD PCASL data after applying different PVEc for
selected cases within each of the four experiments. Fig. 5 shows the
RMSE between estimated and simulated ground truth GM CBF over all
subjects for each experiment. Fig. 6 shows example ROI curves and the
corresponding slope values for each PVEc method for selected cases
within each experiment. Fig. 7 shows the calculated slope values across
all the subjects for each experiment.

In experiment 1, the reference PV estimates were used within the
PVEc to investigate the sensitivity of different PVEc methods to back-
ground noise on ASL data. For no noise (SNR¼INF), all of the methods
were able to correct for PVE, but the spatially regularized method
appeared to be more accurate in capturing short scale variations in GM
CBF, as can be seen most evidently in the results for hypo/hyper regions
in Fig. 4 and also from the lowest errors when SNR¼INF in Fig. 5A for the
two cases with short scale CBF variations: hyper/hypo CBF and fast si-
nusoidal variation. As the SNR was degraded, all of the methods became
less accurate at GM CBF estimation, with LR applied to the ASL data
appearing to be least sensitive to noise, followed by LR applied to the CBF
map and finally the spatially regularized method. Noticeably in Fig. 4 as
the noise increased the results from the spatially regularized method



Fig. 4. Estimated GM CBF map for single-PLD simulated data from a single subject. (A) Hyper/hypo GM CBF; (B) Fast sinusoidal GM CBF variation.
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appeared more ‘noisy’, whereas the maps from LR remained smooth and
errors between true and estimated CBF manifested as global CBF differ-
ences, as can be seen for example in Fig. 6B where the GM CBF in all ROI
was greater than the true (mean) value.

The high accuracy of all the PVEc methods for no noise translated to
small slope values in the ROI analysis, Figs. 6A and 7A: no correction
resulted in a slope of the order of 4,000 ml/100 g/min/%, at least two
orders of magnitude larger than the PVEc results. As the noise increased
the slope value for no correction became less steep, for example, values
around 1,500 ml/100 g/min/% at SNR ¼ 10 in Fig. 7B. For all of the
PVEc methods as noise increased, the absolute value of the slope
increased mirroring the reduction of accuracy seen in the RMSE results.

In experiment 2, the impact of mismatch between the PSF of the ASL
data and the structural image was examined. Effects on both RMSE and
slope were only obvious once the FWHM of the Gaussian kernel applied
to the ASL data exceeded the voxel size of the ASL image (3.5 mm). As the
FWHM increased beyond this value the RMSE increased to approximately
the same degree for all PVEc methods, and it was also associated with a
small increase in RMSE for the non-corrected case. For the spatially
regularized method, the errors introduced by PSF mismatch were man-
ifested in overestimation at lower PV of GM and underestimation at
higher values, as seen in Fig. 6C (in an example with FWHM of 4.5 mm)
and as a negative slope at larger FWHM in Fig. 7B. However, both LR
methods only produced relatively small increases in slope as the PSF
FWHM increase, the observed increase in RMSE for these examples being
associated with global errors in CBF.

In experiment 3, the impact of random errors in the PV estimates was
analyzed for each PVEc method. Similarly to experiment 1, random er-
rors on PV estimates led to an increase in RMSE for all the PVEc methods,
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as shown in Fig. 5C, but the increase in error was more marked with the
spatial method compared to either LR approach. The slope metric again
showed overestimation at low PV GM by the spatial method, as shown in
Fig. 7C, whereas both LRmethods estimated the same GMCBF in all ROIs
on average even as the error on GM PV estimate increased, thus their
slope remained comparatively close to zero. The increase in RMSE seen
for the LR methods was due to consistently underestimating GM CBF in
all ROIs, for example in Fig. 6D both LR methods are underestimating the
true (mean) simulated GM CBF (60 ml/100 g/min).

In experiment 4, the impact of bias in the PV estimate on PVEc
methods was examined. Bias affected all methods and led to an increase
in RMSE with an increase in the degree of bias (bias factor: b), as shown
in Fig. 5D, and the spatial method appeared to be most sensitive to in-
creases in bias. The ROI analysis showed that for increased positive bias
the spatial method tended to underestimate in low and overestimate in
high GM PV regions, resulting in positive slope values; vice versa for
negative bias, as shown in Fig. 7D. Both LR methods tended to globally
underestimate GM CBF at higher bias, but retain slope values relatively
close to zero, for example in Fig. 6E.

Results of simulated experiments using multi-PLD data can be found
in supplementary materials. Looking at the GM CBF map of multi-PLD
ASL data in Fig. 11, the impact of background noise was more substan-
tial than on the single-PLD data for the spatially regularized method. In
terms of perfusion quantification accuracy in noisy data, LRwhen applied
to the data or the estimated perfusion map when using multi-PLD data
were nearly identical in terms of RMSE (Fig. 12A) as opposed to single-
PLD data in Fig. 5A. Apart from these, the results of simulated experi-
ments using multi-PLD data were similar with the results of single-
PLD data.



Fig. 5. RMSE between estimated and simulated GM CBF using noise-free simulated single-PLD data.
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Fig. 6. Example ROI curves for all experiments using single-PLD data. The first row of curves shows the ROI analysis in a perfect situation (SNR¼INF and reference PV estimates).
Subsequent plots reveal the changes of mean GM CBF observed in each experiment for a specific choice of experimental parameter. Each adjacent table shows the estimated slope values for
the linear regression fitting between estimated GM CBF and GM ROI.
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Fig. 7. Estimated slope values of the extended ROI analysis using single-PLD data.
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The results from using LRmethods of kernel size of 3� 3 are shown in
supplementary materials (Figs. 15–21). Although the overall trend of the
results was similar with using the kernel size of 5� 5, the LR methods
became more accurate with the smaller kernel size due to less smoothing
effects. However, it was still less accurate than the spatially regularized
method when reference PV estimates were used in the noise-free simu-
lated data, as shown in Figs. 16A and 19A.
Fig. 9. Estimated slope values of the extended ROI analysis on healthy cohort data. The
slope values of all eight subjects are plotted for each PVEc method.
Healthy cohort data

Healthy cohort experiments
Fig. 8 shows the estimated GM CBF before and after PVEc from two

subjects within the healthy cohort data. Similar to the simulated exper-
iments, the results of the LR methods are nearly identical, with more
spatial variability visible in the maps from the spatially regular-
ized method.

Fig. 9 shows the estimated slope values of the extended ROI analysis
on healthy cohort data. The analysis was performed on data from the first
scan session of each subject. Without PVEc, the slope values are positive,
in agreement with the simulations. After PVEc, the slope value becomes
negative with a median value around �1,000 ml/100 g/min/% for the
LR methods, but more negative for the spatially regularized method.
Similarly to the simulations, the two LR methods achieved nearly iden-
tical slope results.

Fig. 10 shows the wsCV of each PVEc method (including no PVEc) for
the three ROIs. Overall, the wsCV reduced after performing PVEc.
Comparing between each PVEc method, the two LR methods show
similar performance in ROIs containing voxels with less than 70% GM,
whereas the LR on ASL data approach appears to be better in reducing
variability for ROIs containing voxels with greater than 70% PV GM. The
spatially regularized method has similar repeatability to the LR methods
for ROIs containing voxels with greater than 40% GM, but not in those
ROIs with voxels below this threshold, although it was still more
repeatable than no correction.

Discussion

In this work, we have investigated the sensitivity of two different but
similarly motivated PVEc methods for perfusion estimation from ASL on
PCASL data. We have simulated different types of variabilities in ASL
data acquisition as well as PV estimates including background noise in
the ASL data itself, differences in PSF between ASL and structural data,
and errors in the PV estimates. A range of artificial spatial distributions
Fig. 8. Estimated GM CBF maps of two examp
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was considered in GM CBF, consistent with those that have been used
previously by Chappell et al. (2011), to assess how each PVEc method is
able to restore spatial details. Additionally, the impact of PVEc on
repeatability was examined using a cohort of healthy individuals previ-
ously used to examine the repeatability of PCASL. The findings of the
study are threefold: (1) all PVEc methods reduce the bias of PVE in GM
CBF quantification substantially regardless of the variabilities in data
acquisition and PV estimates; (2) the spatially regularized method has
shown superiority to the two LR methods in preserving spatial variations
using data with high SNRs, but it is more sensitive to noise and errors in
the PV estimates; (3) PVEc improves the repeatability of perfusion
quantification using multi-PLD PCASL by reducing the bias from PVE.
Simulation study

It has already been shown that the spatially regularized method
le subjects using different PVEc methods.



Fig. 10. Within-subject coefficient of variation of the PVEc methods in three ROIs. All PVEc methods improve repeatability of perfusion quantification, and the repeatability is higher in
greater GM ROIs.
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appears to have greater ability to preserve spatial details in the GM CBF
image over the LR methods. This was confirmed in this study and was
most obvious where GM CBF varies over shorter length scales and in less
noisy datasets. This finding was demonstrated qualitatively in the form of
estimated GM CBF and quantitatively in the RMSE analysis and the ROI
analyses. Specifically, at low noise levels, the RMSE for the spatially
regularized method was always lower than LR method for simulations in
which the GM CBF map contained short scale variations. Due to the
assumption of the LR method that tissue CBF is homogeneous within the
kernel of a fixed size, a substantial degree of ‘smoothing’ arises after
PVEc, which appears to be similar to blurring the data with a Gaussian
Filter (Asllani et al., 2008). Our current analysis not only confirms the
previous findings but also give insights on the quality of the preserved
spatial variability at different noise levels. Noticeably the LR methods
appeared to be relatively insensitive to noise in data and errors and bias
in the PV estimates; however, this appears to be related to the smoothing
effect of the kernel based approach and results in a trade-off in the detail
of the final GM CBF image. For example, the LRmethods tended to return
relatively small slope values (in the range 0–100 ml/100 g/min/%) from
the extended ROI analysis, consistent with good correction for PVE.
However, this was often associated with a consistent error in GM CBF at
all values of GM PVE, see for example Fig. 6 where the GM CBF values
returned by the LR methods were often consistently different from the
true (mean) value of 60 ml/100 g/min used in the simulation, and this
error was largely invariant with the degree of noise or error in PV esti-
mates used in PVEc. This effect is consistent with what can be seen in
Fig. 4, where the maps from LR are always appearing noticeably smooth
implying that errors are being smoothed away, but at the same time so
are spatial features.

In studying the impact due to PSF mismatch, we have observed an
increase in error with FWHM for both PVEc and non-PVEc methods. The
estimation accuracy reduces primarily only when the FWHM imposed
became larger than the voxel size as shown in Fig. 5B. The effect on the
non-PVEc results is consistent with the corresponding increase in the
influence of PVE that will occur when the true resolution of the data
degrades. The more noticeable increase in RMSE for GM CBF estimation
under PVEc will then be a combination of greater PVE in the data and the
imperfect correction due to the use of a GM PV estimate map that does
not match the true effect. Even for relatively modest FWHM beyond the
voxel size gave rise to errors of up to 20 ml/100 g/min in GM CBF. When
the PSF of ASL data is less than the voxel size, the results here imply that
this should not be a major concern for PVEc of ASL. This is true for certain
readout schemes such as multi-PLD 2D echo-planar imaging. However,
there are notable examples of ASL acquisitions where this could be
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problematic. For instance, acquisitions using 3D GRASE readouts which
tend to have an extended PSF in the slice encoding direction. The original
work of Chappell et al. (2011) did a correction for this effect prior to
PVEc using a ‘deblurring’ method. The present study implies that this
should be considered where PSF mismatches might arise. It is also
noteworthy that the methodology adopted here to model mismatches in
PSF is the same as the spatial smoothing that is sometimes applied to ASL
data to improve visualisation. The results imply that care should be taken
when spatially smoothing ASL data prior to quantification where PVEc is
being used. In practice, the added spatial homogeneity introduced by the
assumptions of PVEc methods means that smoothing of the data prior to
quantification is unlikely to be necessary.

An extended ROI analysis has been developed to compute the slope
value of the classic ROI curve proposed by Asllani et al. (2008). The
purpose was to quantify the observed approximately linear dependency
between GM CBF and GM ROI. A positive slope value indicates over-
estimation in low ROI or underestimation in high ROI, whereas a nega-
tive slope value indicates the opposite. For the non-PVEc GM CBF results,
the estimated slope value ranged between 2,500 and 4,
000 ml/100 g/min/% dependent upon the noise in the data. This
matches the already observed positive correlation between estimated GM
CBF and PV estimates. These slope values correspond to GM CBF being
underestimated between 25 and 40 ml/100 g/min in ROIs with the
lowest proportion of GM. Notably, the slope value reduced for data
without PVEc when the noise increased, implying that care needs to be
taken with either the standard ROI analysis or the slope metric calculated
here when this is applied for the evaluation of PVEc efficacy on real data.

For the spatially regularized method under the impact of errors and
noise, the estimated slope moves away from zero, which indicates a
reduced consistency of GM CBF with GM PV. The tendency was for either
over- or under-estimation in voxels with low GM PV and the opposite at
high GM PV, with the best accuracy in the middle of the range. For the
two LR methods, the slope values were comparatively near to zero in all
experiments even as the parameters of the experiment were varied.
Whilst this would be consistent with LR being an effective PVEc approach
and thus relatively insensitive to the sources of error studies here, it
would appear that this arises largely from the smoothing effect of the LR
kernel. Even when the slope value was small, implying effective correc-
tion, there was global under or over estimation of CBF. Thus the resulting
GM CBF images were very smooth and thereby had a fairly consistent
value for all voxels irrespective of GM PV estimate. On the contrary, the
genuine variations in GM CBF were being suppressed leading to spatially
specific errors that are not captured by ROI analysis method. The ROI
curve method has previously been used to judge the effectiveness of PVEc
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on real ASL data. This study implies that this should be interpreted with
care, as methods that introduce greater smoothness in the estimated CBF
images can appear to be very successful using this approach, despite
introducing error into the CBF image.
Healthy cohort experiments

Results from the analysis using healthy cohort data have shown an
increase of estimated GM CBF in voxels containing low GM PV after
PVEc, which is consistent with existing PVEc studies (Ahlgren et al.,
2014; Asllani et al., 2008; Chappell et al., 2011). The estimated slope
values for the non-PVEc method were between 600 and 3,000 ml/100 g/
min%, indicating a positive correlation with GM PV estimate as shown in
Fig. 9. Cross referencing with the simulation results in Fig. 7A, such
values would be consistent with data containing noise in the range we
might expect to observe in ASL data of this duration of acquisition.
However, the range would imply there is some variability within the
group in either the noise or the degree to which the data from each
subject exhibits PVE.

The slope values after LR PVEc were around �1,000 ml/100 g/min/
%, which is more negative than were observed in the simulation study for
LR correction. A broader range of slope values (between �2,500 and
�500 ml/100 g/min/%) were observed in results of the spatially regu-
larized method. This latter result could be explained from the simulations
by a combination of the different errors simulated. However, the vari-
ability in slope value observed and inconsistency with the LR PVEc
method means that care needs to be taken in interpreting these results
using the simulations since the simulated scenarios might not be fully
capturing variations in GM CBF that are observed in practice.

The repeatability of CBF quantification was improved after PVEc as
evidenced by the reduction of wsCV for all repeated experiments. For the
results without PVEc, the repeatability decreased with a longer gap be-
tween repeated scans, where session repeat was the most repeatable and
month repeat the least. This agrees with the findings of the original
reproducibility study using the same dataset although the current study
used voxelwise calibration instead of CSF-based approach in the original
reproducibility study (Mezue et al., 2014). Together with the results of
the ROI analysis, the nearly identical results of the two LRmethods imply
that it makes no difference whether the LR method is applied before or
after CBF quantification. Although wsCV of the spatially regualrized
method was over 10% for GM ROI between 10% and 40%, it fell to the
same level with the LR method for GM ROI greater than 40%. This
confirmed the simulation results that spatially regularized method
worked more consistently in medium and high ranges of PV estimates.

The metric of wsCV has been widely used to assess the repeatability of
CBF quantification as well as PVEc studies in the past (Ahlgren et al.,
2016; Mutsaerts et al., 2015; Petersen et al., 2010). Ahlgen et al. have
reported an improved repeatability after LR applied to single-PLD PCASL
data (Ahlgren et al., 2016). In particular, the mean within-voxel coeffi-
cient of variation for GM reduced from 30% to 25% after correcting PVE
by the LR method. Although the present study separated GM ROI into
three intervals, we have observed a similar improvement (wsCV reduced
by 5%) after the same correction (LR) method were implemented. In
addition, Ahlgen et al. also investigated the effect of smoothing on CBF
images in terms of repeatability, which, as might be expected, was also
found to improve repeatability between scans. This implies that the
smoothing observed in the GM CBF map after LR PVEc might make a
substantial contribution to making the CBF measurements more repeat-
able apart from correcting for PVE. This is consistent with the observa-
tions of Ahlgren at al. that the modified least trimmed squares (mLTS)
PVEc method, which introduces less smoothing, was also associated with
lower repeatability. While Ahlgren et al. found that the mLTS method for
PVEc actually made the ASL measurements less repeatable than no
correction, this study has shown the spatially regularized method does
offer improvements in repeatability.
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Limitations

A limitation of the study is the reliance on PCASL simulated data for
the baseline experiments. Despite the four different types of GM CBF
patterns created, the simulation does not necessarily capture physiolog-
ical spatial variations in perfusion. This may explain some discrepancies
seen under comparisons with the healthy cohort data. However, the
simulations have provided a well-controlled environment in which to
systemically study sensitivity to error for different PVEc methods. Unlike
previous simulation studies of this kind, here one hundred individual
structural images were employed to generate a simulated cohort that
captured more natural variation in the population, seeking to avoid any
bias in the results from choosing a single subject on which to base the
PV estimates.

We have not sought to investigate all possible PVEc methods that
have been proposed here and have concentrated on comparing the
simplest LR approach to the other major class of methods to use spatial
information. A potential extension would be to consider mLTS and a
wider range of kernel sizes and shapes (such as a circular rather than
square kernel) for LR. However, based on the extra exploration found in
the supplementary material for a smaller kernel size of 3� 3 and existing
literature on PVEc (Asllani et al., 2008; Chappell et al., 2011), we believe
that broadly the conclusions of this study would hold for other variants
on LR. Although we have considered the impact of PVEc on multi-PLD
PCASL in this study on CBF estimation, we have not sought to examine
how this might affect estimates of arterial transit time, which is of in-
terest in hemodynamic studies in its own right (MacIntosh et al., 2010).
This is something that could be explored using the same framework in
the future.

The current study specifically investigated the influence of variabil-
ities on PVEc for ASL perfusion estimation in individuals and the corre-
sponding repeatability in a cohort of healthy subjects. An open question
is the degree to which PVEc might be useful when performing group
studies to look for changes in perfusion associated with activation or
disease, and whether the different PVEc methods are more of less
favorable than each other for this application. This might partially be
answered using simulations like those examined here, although further
work using different PVEc methods within ASL groups studies would still
be valuable to address these questions.

Conclusions

In this work, we have investigated the impact of different sources of
error on PVEc methods when applied to PCASL perfusion images. In
simulated experiments, the spatially regularized method demonstrated
consistent greater ability to preserve spatial details in CBF maps but was
also shown to be sensitive to noise and errors in the PV estimates. The LR
method was consistently less sensitive to noise and errors, but this
appeared to be largely due to the smoothing effect of the kernel
employed, thus the estimated GM CBF was less accurate than the
spatially regularized method whenever there were features in the data
represented over short length scales. The results from a repeatability
study in healthy individuals have shown that both methods reduce
intersession variability, the greater reduction coming from LR potentially
being another effect of the spatial smoothing associated with the method.
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